Market Structure and Credit Card Pricing: What Drives the Interchange?

Zhu Wang

Federal Reserve Bank of Kansas City

April 3, 2008
Motivation

- Credit and debit cards become prominent form of payments
 - 38% US consumer expenditure
 - 75% households own credit cards; 6.3 cards per household
Motivation

- Credit and debit cards become prominent form of payments
 - 38% US consumer expenditure
 - 75% households own credit cards; 6.3 cards per household
- Legal battles and regulations against the credit card networks
 - US: 50 pending cases; Credit Card Fair Fee Act 2008
 - Worldwide: EU, UK, Australia, Spain, Netherlands and etc
Motivation

- Credit and debit cards become prominent form of payments
 - 38% US consumer expenditure
 - 75% households own credit cards; 6.3 cards per household
- Legal battles and regulations against the credit card networks
 - US: 50 pending cases; Credit Card Fair Fee Act 2008
 - Worldwide: EU, UK, Australia, Spain, Netherlands and etc
- The controversy of interchange fees
 - Fees paid to issuers when merchants accept card payments
 - Set by four-party systems: Visa and MasterCard
 - Totals $42 billion or $370 per US household (2007)
Figure: A Four-Party Credit Card System
Figure: U.S. Credit Card Interchange Fees and Transaction Volume
Credit Card Industry Trends: Costs and Competition
Puzzles

- Why have interchange fees been increasing given falling costs and increased competition in the card industry?
Puzzles

- Why have interchange fees been increasing given falling costs and increased competition in the card industry?
- Given the rising interchange fees, why can’t merchants refuse accepting cards? Why has card transaction volume been growing rapidly?
Puzzles

- Why have interchange fees been increasing given falling costs and increased competition in the card industry?
- Given the rising interchange fees, why can’t merchants refuse accepting cards? Why has card transaction volume been growing rapidly?
- What are the causes and consequences of the increasing consumer card reward?
Puzzles

- Why have interchange fees been increasing given falling costs and increased competition in the card industry?
- Given the rising interchange fees, why can’t merchants refuse accepting cards? Why has card transaction volume been growing rapidly?
- What are the causes and consequences of the increasing consumer card reward?
- What can government intervention do in the credit card industry? Is there a socially optimal card pricing?
The Literature

- Two-sided market theories
 - Fundamental externalities in card payment systems
 - Asymmetric pricing on the two-sides
 - Interchange fee: is it too high?
The Literature

- Two-sided market theories
 - Fundamental externalities in card payment systems
 - Asymmetric pricing on the two-sides
 - Interchange fee: is it too high?

- Some limitations
 - Unspecified convenience benefits from card usage
 - Fixed consumer demand invariant to payment choices
 - Imperfect competition among merchants
A New Approach

- Starting point: *mature vs. emerging card markets.*
A New Approach

Starting point: *mature vs. emerging card markets.*

An equilibrium industry model:
- Competing payment instruments, e.g., cards vs. alternatives;
- Rational consumers (merchants) always use (accept) lowest-cost payment instruments;
- Oligopolistic networks set profit-maximizing interchange fees;
- Competitive issuers join the most profitable network and compete with one another via consumer rewards.

New ...findings:
- Collusive card networks demand higher interchange fees as card payment become more efficient;
- Consumer reward and card transaction increase with interchange fees, while consumer surplus does not.
A New Approach

- Starting point: *mature vs. emerging card markets*.

- An equilibrium industry model:
 - Competing payment instruments, e.g., cards vs. alternatives;
 - Rational consumers (merchants) always use (accept) lowest-cost payment instruments;
 - Oligopolistic networks set profit-maximizing interchange fees;
 - Competitive issuers join the most profitable network and compete with one another via consumer rewards.

- New findings:
 - Collusive card networks demand higher interchange fees as card payment become more efficient;
 - Consumer reward and card transaction increase with interchange fees, while consumer surplus does not.
Merchants:

- A continuum of merchants sell a homogenous good in the competitive market.
Merchants:

- A continuum of merchants sell a homogenous good in the competitive market.
- The good – p: price; k: cost (without payment).
Merchants:

- A continuum of merchants sell a homogenous good in the competitive market.
- The good – p: price; k: cost (without payment).
- Merchants: Accepting cash costs $\tau_{m,a}$ per dollar, while accepting card costs $\tau_{m,e}$ per dollar plus a discount S per dollar paid to acquirers.
Merchants:

- A continuum of merchants sell a homogenous good in the competitive market.
- The good – $p :$ price; $k :$ cost (without payment).
- Merchants: Accepting cash costs $\tau_{m,a}$ per dollar, while accepting card costs $\tau_{m,e}$ per dollar plus a discount S per dollar paid to acquirers.
- A cash store charges p_a, while a card store charges p_e:

$$p_a = \frac{k}{1 - \tau_{m,a}}; \quad p_e = \max\left(\frac{k}{1 - \tau_{m,e} - S}, p_a\right).$$
Merchants:

- A continuum of merchants sell a homogenous good in the competitive market.
- The good – p : price; k : cost (without payment).
- Merchants: Accepting cash costs $\tau_{m,a}$ per dollar, while accepting card costs $\tau_{m,e}$ per dollar plus a discount S per dollar paid to acquirers.
- A cash store charges p_a, while a card store charges p_e:
 \[p_a = \frac{k}{1 - \tau_{m,a}}; \quad p_e = \max\left(\frac{k}{1 - \tau_{m,e} - S}, p_a\right). \]
- The condition $p_a \leq p_e$ ensures card stores do not incur losses in case someone use cash there, so that
 \[S \geq \tau_{m,a} - \tau_{m,e}; \]
 Moreover, a meaningful pricing requires
 \[1 - \tau_{m,e} > S. \]
Consumers:

- Two types: *cash* consumers vs. *card* consumers.
Consumers:

- Two types: *cash* consumers vs. *card* consumers.
- Using cash costs consumers \(\tau_{c,a} \) per dollar, while using card costs \(\tau_{c,e} \) but receives a reward \(R \) from issuers. Therefore, card consumers do not shop at cash stores if and only if

\[
(1 + \tau_{c,a})p_a \geq (1 + \tau_{c,e} - R) \ p_e \iff \frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} \geq \frac{1 + \tau_{c,e} - R}{1 - \tau_{m,e} - S}.
\]
Consumers:

- Two types: *cash* consumers vs. *card* consumers.
- Using cash costs consumers $\tau_{c,a}$ per dollar, while using card costs $\tau_{c,e}$ but receives a reward R from issuers. Therefore, card consumers do not shop at cash stores if and only if

\[
(1 + \tau_{c,a})p_a \geq (1 + \tau_{c,e} - R) p_e \iff \frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} \geq \frac{1 + \tau_{c,e} - R}{1 - \tau_{m,e} - S}.
\]

- Given $p_a \leq p_e$, cash consumers prefer shopping at cash stores and card consumers have no incentive to use cash in card stores.
Consumers:

- Two types: *cash* consumers vs. *card* consumers.
- Using cash costs consumers $\tau_{c,a}$ per dollar, while using card costs $\tau_{c,e}$ but receives a reward R from issuers. Therefore, card consumers do not shop at cash stores if and only if

$$
(1 + \tau_{c,a}) p_a \geq (1 + \tau_{c,e} - R) p_e \iff \frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} \geq \frac{1 + \tau_{c,e} - R}{1 - \tau_{m,e} - S}.
$$

- Given $p_a \leq p_e$, cash consumers prefer shopping at cash stores and card consumers have no incentive to use cash in card stores.
- When making a purchase decision, card consumers face the after-reward price

$$
p_r = (1 + \tau_{c,e} - R)p_e = \frac{(1 + \tau_{c,e} - R)k}{1 - \tau_{m,e} - S},
$$

and have the total demand for card transaction volume TD:

$$
TD = p_e D(p_r) = \frac{k}{1 - \tau_{m,e} - S} D\left[\frac{(1 + \tau_{c,e} - R)k}{1 - \tau_{m,e} - S}\right].
$$
Acquirers:

- The acquiring market is competitive, where each acquirer receives a discount rate S from merchants and pays an interchange rate I to card issuers.
Acquirers:

- The acquiring market is competitive, where each acquirer receives a discount rate S from merchants and pays an interchange rate I to card issuers.
- Acquiring incurs a constant cost C for each dollar of transaction.
Acquirers:

- The acquiring market is competitive, where each acquirer receives a discount rate S from merchants and pays an interchange rate I to card issuers.
- Acquiring incurs a constant cost C for each dollar of transaction.
- For simplicity, we normalize $C = 0$ so acquirers play no role in our analysis but pass through merchant discounts as interchange fees to the issuers, i.e., $S = I$.
Issuers:

- The issuing market is competitive, where each issuer receives an interchange rate I from acquirers and pays a reward rate R to consumers.
Issuers:

- The issuing market is competitive, where each issuer receives an interchange rate I from acquirers and pays a reward rate R to consumers.
- An issuer α incurs a fixed cost K each period and faces an increasing cost V_α^β / α for processing its volume V_α, where $\beta > 1$.
Issuers:

- The issuing market is competitive, where each issuer receives an interchange rate I from acquirers and pays a reward rate R to consumers.
- An issuer α incurs a fixed cost K each period and faces an increasing cost V^β_α / α for processing its volume V_α, where $\beta > 1$.
- Issuers are heterogeneous in their operational efficiency α, which is distributed with pdf $g(\alpha)$ over the population.
Issuers:

- The issuing market is competitive, where each issuer receives an interchange rate I from acquirers and pays a reward rate R to consumers.
- An issuer α incurs a fixed cost K each period and faces an increasing cost V_α^β / α for processing its volume V_α, where $\beta > 1$.
- Issuers are heterogeneous in their operational efficiency α, which is distributed with pdf $g(\alpha)$ over the population.
- Issuers pay the card network a processing fee T per dollar of transaction and a share of their profits.
Issuers (continued):

- Issuer α’s profit π_α (before sharing with the network):

$$\pi_\alpha = \text{Max} \left(\frac{(I - R - T)}{V_\alpha} \right) V_\alpha - \frac{V_\beta}{V_\alpha} \alpha - K \Rightarrow$$

$$V_\alpha = \left(\frac{\alpha(I - R - T)}{\beta} \right)^{\frac{1}{\beta - 1}}; \quad \pi_\alpha = \frac{\beta - 1}{\beta} \left(\frac{\alpha}{\beta} \right)^{\frac{1}{\beta - 1}} (I - R - T)^{\frac{\beta}{\beta - 1}} - K.$$
Issuers (continued):

- Issuer α’s profit π_α (before sharing with the network):

\[
\pi_\alpha = \max_{V_\alpha} (I - R - T) V_\alpha - \frac{V_\alpha^{\beta}}{\alpha} - K \Rightarrow
\]

\[
V_\alpha = \left(\frac{\alpha (I - R - T)}{\beta}\right)^{\frac{1}{\beta - 1}}; \quad \pi_\alpha = \frac{\beta - 1}{\beta} \left(\frac{\alpha}{\beta}\right)^{\frac{1}{\beta - 1}} (I - R - T)^{\frac{\beta}{\beta - 1}} - K.
\]

- Free entry condition requires that the marginal issuer α^* breaks even, hence

\[
\pi_{\alpha^*} = 0 \implies \frac{\beta - 1}{\beta} \left(\frac{\alpha^*}{\beta}\right)^{\frac{1}{\beta - 1}} (I - R - T)^{\frac{\beta}{\beta - 1}} = K.
\]
Issuers (continued):

- Issuer α’s profit π_α (before sharing with the network):

$$\pi_\alpha = \max \left((I - R - T) V_\alpha - \frac{V_\beta}{\alpha} - K \right) \Rightarrow$$

$$V_\alpha = \left(\frac{\alpha(I - R - T)}{\beta} \right)^{\frac{1}{\beta - 1}}; \quad \pi_\alpha = \frac{\beta - 1}{\beta} \left(\frac{\alpha}{\beta} \right)^{\frac{1}{\beta - 1}} (I - R - T)^{\frac{\beta}{\beta - 1}} - K.$$

- Free entry condition requires that the marginal issuer α^* breaks even, hence

$$\pi_{\alpha^*} = 0 \implies \frac{\beta - 1}{\beta} \left(\frac{\alpha^*}{\beta} \right)^{\frac{1}{\beta - 1}} (I - R - T)^{\frac{\beta}{\beta - 1}} = K.$$

- Therefore, the total number of issuers is

$$N = \int_{\alpha^*}^{\infty} g(\alpha) d\alpha$$

and the total supply of card transaction volume is

$$TV = \int_{\alpha^*}^{\infty} V_\alpha g(\alpha) d\alpha = \int_{\alpha^*}^{\infty} \left[\left(\frac{I - R - T}{\beta} \right)^{\frac{1}{\beta - 1}} \right] g(\alpha) d\alpha.$$
Each period, a card network incurs a variable cost T per dollar of transaction to provide the service.
Network:

- Each period, a card network incurs a variable cost T per dollar of transaction to provide the service.
- In return, the network charges its member issuers a processing fee T to cover the variable costs and shares with their profits.
Network:

- Each period, a card network incurs a variable cost T per dollar of transaction to provide the service.
- In return, the network charges its member issuers a processing fee T to cover the variable costs and shares with their profits.
- As a result, the card network sets the interchange fee I to maximize the total profits of its member issuers:

\[\Omega = \int_{\alpha^*}^{\infty} \pi_{\alpha} g(\alpha) \, d\alpha. \]
Monopoly Network’s Problem

\[
\begin{align*}
\text{Max} \quad & \Omega^m = \int_{\alpha^*}^{\infty} \pi_\alpha g(\alpha) d\alpha \\
\text{s.t.} \quad & \pi_\alpha = \left(\frac{\beta - 1}{\beta}\right)\left(\frac{\alpha}{\beta}\right)^{\frac{1}{\beta - 1}}(I - R - T)^{\frac{1}{\beta - 1}} - K, \quad \text{(Profit of Issuer } \alpha) \\
\alpha^* = & \beta K^{\beta - 1}\left(\frac{\beta}{\beta - 1}\right)^{\beta - 1}(I - R - T)^{-\beta}, \quad \text{(Marginal Issuer } \alpha^*) \\
N = & \int_{\alpha^*}^{\infty} g(\alpha) d\alpha, \quad \text{(Number of Issuers)} \\
1 + & \tau_{c,a} \geq 1 + \tau_{c,e} - R \\frac{1}{1 - \tau_{m,a} - I}, \quad \text{(API Constraint)} \\
1 - & \tau_{m,e} > I \geq \tau_{m,a} - \tau_{m,e}, \quad \text{(Pricing Constraint)} \\
TV = & \int_{\alpha^*}^{\infty} V_\alpha g(\alpha) d\alpha = \int_{\alpha^*}^{\infty} \left[\left(\frac{I - R - T}{\beta}\right)\alpha\right]^{\frac{1}{\beta - 1}} g(\alpha) d\alpha, \quad \text{(Total Card Supply)} \\
TD = & \frac{k}{1 - \tau_{m,e} - I}D\left(\frac{k}{1 - \tau_{m,e} - I}(1 + \tau_{c,e} - R)\right), \quad \text{(Total Card Demand)} \\
TV = & TD. \quad \text{(CMC Condition)}
\end{align*}
\]

Monopoly Network:

- Assume \(\alpha \) follows a Pareto distribution so that

 \[g(\alpha) = \gamma L^\gamma / (\alpha^{\gamma+1}) \]

 where \(\gamma > 1 \) and \(\beta \gamma > 1 + \gamma \).
Monopoly Network:

- Assume α follows a Pareto distribution so that $g(\alpha) = \gamma L^\gamma / (\alpha^{\gamma+1})$, where $\gamma > 1$ and $\beta \gamma > 1 + \gamma$.
- Consumer demand function: $D = \eta p_r^{-\epsilon}$; and pricing constraint $1 - \tau_{m,e} > I \geq \tau_{m,a} - \tau_{m,e}$ is not binding.
Monopoly Network:

- Assume α follows a Pareto distribution so that $g(\alpha) = \gamma L^\gamma / (\alpha^{\gamma+1})$, where $\gamma > 1$ and $\beta \gamma > 1 + \gamma$.
- Consumer demand function: $D = \eta p^{1-\epsilon}$; and pricing constraint $1 - \tau_{m,e} > l \geq \tau_{m,a} - \tau_{m,e}$ is not binding.
- The monopoly maximization problem can be rewritten as

 $$\max_{\Omega^m} \Omega^m = A(l - R - T)^{\beta \gamma}$$ \hspace{1cm} \text{(Network Profit)}

 $$\text{s.t. } B(l - R - T)^{\beta \gamma - 1} = (1 - \tau_{m,e} - l)^{\epsilon - 1}(1 + \tau_{c,e} - R)^{-\epsilon}$$ \hspace{1cm} \text{(CMC)}

 $$\frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} \geq \frac{1 + \tau_{c,e} - R}{1 - \tau_{m,e} - l}.$$ \hspace{1cm} \text{(API)}

A, B are functions of parameters.
Monopoly Network (Continued):

- Denote the net card price $Z = I - R$.
Monopoly Network (Continued):

- Denote the net card price $Z = I - R$.
- Rewrite the monopoly maximization problem:

$$\max_{\Omega} \Omega^m = A(Z - T)^{\beta\gamma} \quad \text{(Network Profit)}$$

s.t. \quad B(Z - T)^{\beta\gamma-1} = (1 - \tau_{m,e} - I)^{\epsilon-1}(1 + \tau_{c,e} + Z - I)^{-\epsilon}, \quad \text{(CMC)}$$

$$\frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} \geq \frac{1 + \tau_{c,e} + Z - I}{1 - \tau_{m,e} - I}. \quad \text{(API)}$$
Denote the net card price $Z = I - R$.

Rewrite the monopoly maximization problem:

$$\max_{l} \Omega^m = A(Z - T)^{\beta\gamma}$$ (Network Profit)

s.t. $$B(Z - T)^{\beta\gamma-1} = (1 - \tau_{m,e} - l)^{\epsilon-1}(1 + \tau_{c,e} + Z - I)^{-\epsilon},$$ (CMC)

$$\frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} \geq \frac{1 + \tau_{c,e} + Z - I}{1 - \tau_{m,e} - I}.$$ (API)

Two scenarios:

- elastic demand ($\epsilon > 1$) and inelastic demand ($\epsilon \leq 1$).
Monopoly Network (Continued):

- Elastic demand ($\varepsilon \geq \frac{1+\tau_{c,a}}{\tau_{c,a}+\tau_{m,a}} > 1$):

\[
\frac{1 + \tau_{c,e} + Z - I}{1 - \tau_{m,e} - I} = \frac{\varepsilon}{\varepsilon - 1},
\]

(FOC)

\[
B(Z - T)^{\beta\gamma^{-1}} = (1 - \tau_{m,e} - I)^{\varepsilon^{-1}}(1 + \tau_{c,e} + Z - I)^{-\varepsilon}.
\]

(CMC)
Monopoly Network (Continued):

- Elastic demand ($\varepsilon \geq \frac{1+\tau_{c,a}}{\tau_{c,a}+\tau_{m,a}} > 1$):
 \[
 \frac{1 + \tau_{c,e} + Z - I}{1 - \tau_{m,e} - I} = \frac{\varepsilon}{\varepsilon - 1},
 \]
 \[
 B(Z - T)^{\beta\gamma^{-1}} = (1 - \tau_{m,e} - I)^{\varepsilon^{-1}}(1 + \tau_{c,e} + Z - I)^{-\varepsilon}.
 \]
 \[
 \] (FOC)

- Less elastic ($\frac{1+\tau_{c,a}}{\tau_{c,a}+\tau_{m,a}} > \varepsilon > 1$) or inelastic ($\varepsilon \leq 1$) demand:
 \[
 \frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} = \frac{1 + \tau_{c,e} + Z - I}{1 - \tau_{m,e} - I},
 \]
 \[
 B(Z - T)^{\beta\gamma^{-1}} = (1 - \tau_{m,e} - I)^{\varepsilon^{-1}}(1 + \tau_{c,e} + Z - I)^{-\varepsilon}.
 \]
 \[
 \] (CMC)
Monopoly Interchange Pricing: Elastic Demand

Case (1)

Case (2)
Monopoly Interchange Pricing: Inelastic Demand

Case (3)

CMC Equation ($\epsilon \leq 1$)

API Constraint

Z^m $\tau_{m,a} - \tau_{m,e}$ I^m $1 - \tau_{m,e}$

Case (4)

API Constraint

CMC Equation ($\epsilon \leq 1$)

Z^m $\tau_{m,a} - \tau_{m,e}$ I^m $1 - \tau_{m,e}$
Endogenous Variables

\[R = I - Z; \]

\[V_\alpha = \left(\frac{\alpha}{\beta} (Z - T) \right)^{\frac{1}{\beta - 1}}; \]

\[N = \int_{\alpha^*}^{\infty} g(\alpha) d\alpha = \left(\frac{L}{\alpha^*} \right)^\gamma; \]

\[TV = B(Z - T)^{\beta\gamma - 1} k^{1-\varepsilon}; \]

\[p_e = \frac{k}{1 - \tau_{m,e}}; \]

\[p_r = \frac{(1 + \tau_{c,e} + Z - I)}{(1 - \tau_{m,e} - I)} k; \]

\[D = \eta p_r^{-\varepsilon}; \]

\[A = \left(\frac{K \beta}{\beta - 1} (1 - \beta) \gamma \right) \frac{KL^\gamma \beta^{-\gamma}}{\beta^\gamma - \gamma - 1}; \]

\[B = \frac{L^\gamma \beta^{-\gamma} k^{\varepsilon - 1}}{\eta} \left(\frac{\beta_\gamma - \gamma}{\beta^\gamma - \gamma - 1} \right) \left(\frac{K \beta}{\beta - 1} \right)^{1 + \gamma - \beta \gamma}. \]
Equilibrium Industry Dynamics under a Monopoly Network

<table>
<thead>
<tr>
<th>I</th>
<th>R</th>
<th>Z</th>
<th>π_α</th>
<th>V_α</th>
<th>N</th>
<th>Ω</th>
<th>TV</th>
<th>P_e</th>
<th>P_r</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchange fee</td>
<td>Consumer reward</td>
<td>Net card price</td>
<td>Issuer α profit</td>
<td>Issuer α volume</td>
<td>Number of issuers</td>
<td>Network profit</td>
<td>Network volume</td>
<td>Retail price</td>
<td>After-reward price</td>
<td>Card user’s consumption</td>
</tr>
</tbody>
</table>

$\tau_{m,e}$										
---	---	---	---	---	---	---	---	---	0	0
merchant card cost										

$\tau_{c,e}$										
---	---	---	---	---	---	---	---	---	0	0
consumer card cost										

| T | | | | | | | | | | |
| network card cost | | | | | | | | | | |

| K | | | | | | | | | | |
| issuer entry cost | | | | | | | | | | |

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Equilibrium Industry Dynamics under a Monopoly Network (continued)

<table>
<thead>
<tr>
<th></th>
<th>I Interchange fee</th>
<th>R Consumer reward</th>
<th>Z Net card price</th>
<th>(\pi_a) Issuer (a) profit</th>
<th>(V_a) Issuer (a) volume</th>
<th>N Number of issuers</th>
<th>(\Omega) Network profit</th>
<th>TV Network volume</th>
<th>(P_e) Retail price</th>
<th>(P_r) After-reward price</th>
<th>D Card user’s Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_{m,a}) merchand cash cost</td>
<td>0</td>
</tr>
<tr>
<td>(\tau_{c,a}) consumer cash cost</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\epsilon \geq \frac{1+\tau_{c,a}}{\tau_{c,a} + \tau_{m,e}} > 1 \]

\[\frac{1+\tau_{c,a}}{\tau_{c,a} + \tau_{m,e}} > \epsilon \geq 0 \]

\(\tau_{m,a} \) merchand cash cost

\(\tau_{c,a} \) consumer cash cost

\(\epsilon \geq \frac{1+\tau_{c,a}}{\tau_{c,a} + \tau_{m,e}} > 1 \)
Monopoly Network: What do we learn?

- Why have interchange fees been increasing?
 - Interchange fees increase as card payments become more efficient or the issuers’ mkt becomes more competitive.
Monopoly Network: What do we learn?

- Why have interchange fees been increasing?
 - Interchange fees increase as card payments become more efficient or the issuers’ market becomes more competitive.

- Why can’t merchants refuse cards?
 - As card payment becomes more efficient, card networks can charge higher interchange fees but keep cards a competitive payment service to merchants.
Monopoly Network: What do we learn?

- Why have interchange fees been increasing?
 - Interchange fees increase as card payments become more efficient or the issuers’ mkt becomes more competitive.

- Why can’t merchants refuse cards?
 - As card payment becomes more efficient, card networks can charge higher interchange fees but keep cards a competitive payment service to merchants.

- Why are interchange fees lower for low-fraud transactions?
 - Different API (alternative payment instrument) constraints that card networks face in different environments.
Duopoly Networks

- Each network’s objective:

\[U_i = \sum_{t=0}^{\infty} \delta^t \Omega^i (l_{it}, l_{jt}). \]
Duopoly Networks

- Each network’s objective:

\[U_i = \sum_{t=0}^{\infty} \delta^t \Omega^i(l_{it}, l_{jt}). \]

- Bertrand Competition:

Minimum Interchange Fee: \(l = \tau_{m,a} - \tau_{m,e} \)
Duopoly Networks

- Each network’s objective:

\[U_i = \sum_{t=0}^{\infty} \delta^t \Omega^i (I_{it}, I_{jt}) . \]

- Bertrand Competition:

Minimum Interchange Fee: \(I = \tau_{m,a} - \tau_{m,e} \)

- Tacit Collusion:

Trigger Strategy \(\implies \) Monopoly Interchange Fee
Top Eight Credit Card Issuers in 2004

<table>
<thead>
<tr>
<th>ISSUERS</th>
<th>VISA</th>
<th>MASTER CARD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank</td>
<td># Cards (M)</td>
</tr>
<tr>
<td>JP Morgan Chase</td>
<td>2</td>
<td>48.1</td>
</tr>
<tr>
<td>Citigroup</td>
<td>3</td>
<td>28.9</td>
</tr>
<tr>
<td>MBNA</td>
<td>5</td>
<td>24.4</td>
</tr>
<tr>
<td>Bank of America</td>
<td>1</td>
<td>58.1</td>
</tr>
<tr>
<td>Capital One</td>
<td>4</td>
<td>26.9</td>
</tr>
<tr>
<td>HSBC</td>
<td>7</td>
<td>10.3</td>
</tr>
<tr>
<td>Providen</td>
<td>8</td>
<td>10.1</td>
</tr>
<tr>
<td>Wells Fargo</td>
<td>10</td>
<td>7.1</td>
</tr>
</tbody>
</table>
Visa and MasterCard Comparison 2004

<table>
<thead>
<tr>
<th></th>
<th>Visa</th>
<th>MasterCard</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchants (M)</td>
<td>4.6</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Outlets (M)</td>
<td>5.7</td>
<td>5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>Cardholders (M)</td>
<td>96.2</td>
<td>96.3</td>
<td>118.5</td>
</tr>
<tr>
<td>Cards (M)</td>
<td>295.3</td>
<td>271.5</td>
<td>566.8</td>
</tr>
<tr>
<td>Accounts (M)</td>
<td>215.5</td>
<td>217.6</td>
<td>433.1</td>
</tr>
<tr>
<td>Active Accts (M)</td>
<td>115.2</td>
<td>120.1</td>
<td>235.3</td>
</tr>
<tr>
<td>Transactions (M)</td>
<td>7,286.8</td>
<td>5,286.2</td>
<td>12,573.0</td>
</tr>
<tr>
<td>Total Volume ($B)</td>
<td>722.2</td>
<td>546.7</td>
<td>1268.9</td>
</tr>
<tr>
<td>Outstandings ($B)</td>
<td>302.9</td>
<td>293.7</td>
<td>596.48</td>
</tr>
</tbody>
</table>
Policy and Welfare Analysis

- Price cut: \(I < I^m \).

\[
B(Z - T)^{\beta \gamma - 1} = (1 - \tau_{m,e} - I)^{\varepsilon - 1}(1 + \tau_{c,e} + Z - I)^{-\varepsilon}.
\]

(CMC)

The effects:

<table>
<thead>
<tr>
<th>Z</th>
<th>R</th>
<th>(\pi_\alpha)</th>
<th>(V_\alpha)</th>
<th>N</th>
<th>(\Omega)</th>
<th>TV</th>
<th>(p_e)</th>
<th>(p_r)</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>+</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>
Policy and Welfare Analysis

- **Price cut:** $l < l^m$.

 \[
 B(Z - T)^{\beta \gamma^{-1}} = (1 - \tau_{m,e} - l)^{\varepsilon^{-1}}(1 + \tau_{c,e} + Z - l)^{-\varepsilon}.
 \]

 (CMC)

 The effects:

 | | | | | | | | | | |
 |---|---|---|---|---|---|---|---|---|
 | I | + | ± | + | + | + | + | + | + |

- **Price ceiling:** $l^c < l^m$.

 \[
 B(Z - T)^{\beta \gamma^{-1}} = (1 - \tau_{m,e} - l^c)^{\varepsilon^{-1}}(1 + \tau_{c,e} + Z - l^c)^{-\varepsilon}.
 \]

 (CMC)
Interchange Ceiling: Elastic/Inelastic Demand

Case (5)

API Constraint

CMC Equation ($\varepsilon > 1$)

Case (6)

API Constraint

CMC Equation ($\varepsilon \leq 1$)
Equilibrium Industry Dynamics under a Binding Interchange Ceiling

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>R</th>
<th>Z</th>
<th>π_α</th>
<th>V_α</th>
<th>N</th>
<th>Ω</th>
<th>TV</th>
<th>P_e</th>
<th>P_r</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interchange fee</td>
<td>Consumer reward</td>
<td>Net card price</td>
<td>Issuer α profit</td>
<td>Issuer α volume</td>
<td>Number of issuers</td>
<td>Network profit</td>
<td>Network volume</td>
<td>Retail price</td>
<td>After-reward price</td>
<td>Card user’s consumption</td>
</tr>
<tr>
<td>$\tau_{c,e}$ consumer card cost</td>
<td>0</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>0</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>T network card cost</td>
<td>0</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>0</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>K issuer entry cost</td>
<td>0</td>
<td>−</td>
<td>+</td>
<td>±</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>0</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>$\tau_{m,a}$ merchand cash cost</td>
<td>0</td>
</tr>
<tr>
<td>$\tau_{c,a}$ consumer cash cost</td>
<td>0</td>
</tr>
<tr>
<td>$\tau_{m,e}$: merchand card cost</td>
<td></td>
</tr>
<tr>
<td>$\varepsilon > 1$</td>
<td>0</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>$\varepsilon = 1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>$0 < \varepsilon < 1$</td>
<td>0</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
</tbody>
</table>
Social Planner’s Problem

\[
\begin{align*}
\text{Max } \Omega^* &= \int_0^{Q^*} D^{-1}(Q) dQ - \frac{k(1 + \tau_{c,e} - R)}{1 - \tau_{m,e} - I} Q^* + \int_{\alpha^*}^{\infty} \pi_\alpha g(\alpha) d\alpha \quad \text{(Social Surplus)} \\
\text{s.t. } Q^* &= D\left(\frac{k}{1 - \tau_{m,e} - I}(1 + \tau_{c,e} - R)\right), \quad \text{(Demand of Goods)} \\
\pi_\alpha &= \left(\frac{\beta - 1}{\beta}\right)\left(\frac{\alpha^*}{\beta}\right)^{1-\tau}\pi(1 - R - T)^{\frac{\beta}{\beta - 1}} - K, \quad \text{(Profit of Issuer } \alpha \text{)} \\
\alpha^* &= \beta K^{\beta - 1}\left(\frac{\beta - 1}{\beta}\right)^{1-\tau}(1 - R - T)^{-\beta}, \quad \text{(Marginal Issuer } \alpha^* \text{)} \\
N &= \int_{\alpha^*}^{\infty} g(\alpha) d\alpha, \quad \text{(Number of Issuers)} \\
1 + \tau_{c,a} &\geq \frac{1 + \tau_{c,e} - R}{1 - \tau_{m,a} - I}, \quad \text{(API Constraint)} \\
1 - \tau_{m,e} &> I \geq \tau_{m,a} - \tau_{m,e}, \quad \text{(Pricing Constraint)} \\
TV &= \int_{\alpha^*}^{\infty} V_\alpha g(\alpha) d\alpha = \int_{\alpha^*}^{\infty} [(1 - R - T)]^{\frac{1}{\beta}} g(\alpha) d\alpha, \quad \text{(Total Card Supply)} \\
TD &= \frac{k}{1 - \tau_{m,e} - I} D\left(\frac{k}{1 - \tau_{m,e} - I}(1 + \tau_{c,e} - R)\right), \quad \text{(Total Card Demand)} \\
TV &= TD. \quad \text{(CMC Condition)}
\end{align*}
\]
Social Planner’s Problem

- Assume α follows a Pareto distribution so that $g(\alpha) = \gamma L^\gamma / (\alpha^{\gamma+1})$, where $\gamma > 1$ and $\beta \gamma > 1 + \gamma$.
Social Planner’s Problem

- Assume α follows a Pareto distribution so that $g(\alpha) = \gamma L^{\gamma}/(\alpha^{\gamma+1})$, where $\gamma > 1$ and $\beta \gamma > 1 + \gamma$.
- Consumer demand: $D = \eta p^{-\varepsilon}$; pricing constraint $1 - \tau_{m,e} > I \geq \tau_{m,a} - \tau_{m,e}$ is not binding.
Social Planner’s Problem

- Assume \(\alpha \) follows a Pareto distribution so that
 \[g(\alpha) = \gamma L^\gamma / (\alpha^{\gamma+1}) \], where \(\gamma > 1 \) and \(\beta \gamma > 1 + \gamma \).

- Consumer demand: \(D = \eta p^{-\varepsilon} \); pricing constraint
 \[1 - \tau_{m,e} > I \geq \tau_{m,a} - \tau_{m,e} \] is not binding.

- For \(\varepsilon > 1 \), the social planner’s problem can be rewritten as

\[
\max_I \Omega^s = A(Z - T)^{\beta \gamma} + \frac{\eta}{\varepsilon - 1} p_r^{1-\varepsilon} \quad \text{(Social Surplus)}
\]

s.t. \(B(Z - T)^{\beta \gamma - 1} = (1 - \tau_{m,e} - I)^{\varepsilon - 1}(1 + \tau_{c,e} + Z - I)^{-\varepsilon}, \)
\(\frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} \geq \frac{1 + \tau_{c,e} + Z - I}{1 - \tau_{m,e} - I}. \)
\(\text{(CMC)} \)
\(\text{(API)} \)
Social Planner’s Problem

- Assume α follows a Pareto distribution so that $g(\alpha) = \gamma L^\gamma / (\alpha^{\gamma+1})$, where $\gamma > 1$ and $\beta \gamma > 1 + \gamma$.

- Consumer demand: $D = \eta p^{-\varepsilon}$; pricing constraint $1 - \tau_{m,e} > I \geq \tau_{m,a} - \tau_{m,e}$ is not binding.

- For $\varepsilon > 1$, the social planner’s problem can be rewritten as

\[
\max_I \Omega^s = A(Z - T)^{\beta \gamma} + \frac{\eta}{\varepsilon - 1} p_r^{1-\varepsilon} \quad \text{(Social Surplus)}
\]

s.t.
\[
B(Z - T)^{\beta \gamma - 1} = (1 - \tau_{m,e} - I)^{\varepsilon - 1}(1 + \tau_{c,e} + Z - I)^{-\varepsilon},
\]

\[
\frac{1 + \tau_{c,a}}{1 - \tau_{m,a}} \geq \frac{1 + \tau_{c,e} + Z - I}{1 - \tau_{m,e} - I}.
\]

- Consequently, $l^s \leq l^m$. (Similar proofs for $\varepsilon \leq 1$).
Further Considerations

- The analysis provides some justification for government interventions on interchange pricing.
Further Considerations

- The analysis provides some justification for government interventions on interchange pricing.
- However, several additional issues may complicate the results.
 - Exogenous vs. endogenous technology progress.
 - Market costs vs. social costs of payment instruments.
 - Competitive vs. monopolistic merchant markets.
 - Unintended consequences.
Further Considerations

- The analysis provides some justification for government interventions on interchange pricing.
- However, several additional issues may complicate the results.
 - Exogenous vs. endogenous technology progress.
 - Market costs vs. social costs of payment instruments.
 - Competitive vs. monopolistic merchant markets.
 - Unintended consequences.
- The role of merchants.
Takeaway from this paper

- Do card networks have market power?
- Do rising consumer rewards increase consumer welfare?
- Do rising interchange fees hurt merchants?
- What should government do in this market?