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Abstract

Despite growing interest in the use of complex models, such as machine

learning (ML) models, for credit underwriting, ML models are difficult to

interpret, and it is possible for them to learn relationships that yield de facto

discrimination. How can we understand the behavior and potential biases of

these models, especially if our access to the underlying model is limited? We

argue that counterfactual reasoning is ideal for interpreting model behavior,

and that Gaussian processes (GP) can provide approximate counterfactual

reasoning while also incorporating uncertainty in the underlying model’s functional

form. We illustrate with an exercise in which a simulated lender uses a biased

machine model to decide credit terms. Comparing aggregate outcomes does not

clearly reveal bias, but with a GPmodel we can estimate individual counterfactual

outcomes. This approach can detect the bias in the lending model even when

only a relatively small sample is available. To demonstrate the value of this

approach for the more general task of model interpretability, we also show how

the GP model’s estimates can be aggregated to recreate the partial density

functions for the lending model.
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JEL Classifications: C10, C14, C18, C45

1 Introduction

In recent years there has been a growing appetite to use machine learning for finance

and economics. Fintech firms in particular have suggested that ML models, combined

with alternative data sources (big data) can help extend credit access.

Despite their appeal approaches that use AI/ML/big data are difficult to interpret.

It can be challenging to determine or understand what influences them and it is

possible for these approaches to learn relationships (or representations) that yield de

facto minority discrimination. The potential for ML models to produce discriminatory

outputs is not an abstract concern as there have been many recent examples of

machine learning models exhibiting some form of minority bias in several domains

from facial recognition (Buolamwini and Gebru, 2018), to speech recognition (Koenecke

et al., 2020), to recidivism prediction (Angwin et al., 2016).

How can we understand the behavior of a complex, nonlinear model? How can we

determine if a model is exhibiting bias against minority groups? Furthermore, how

can these things be done if we are limited in our access to the underlying model?

In this paper we argue that counterfactual reasoning is an ideal way of thinking

about interpreting model behavior and that gaussian processes can be used to enable

approximate counterfactual reasoning about black box models while also enabling us

to appreciate the uncertainty over the underlying model’s functional form.

This paper builds on several large bodies of reseaerch on methodologies of causal

inference, the economics of discrimination and machine learning (computer science).

We advocate for an approach similar to the field studies and correspondence studies

in labor discrimination (see e.g. Bertrand and Mullainathan, 2004). It is a departure

from broader studies on discriminatory lending in fintech, much of which focuses on

disparate outcomes in the aggregate sense and in a sense that may mask more complex

patterns of bias or discrimination otherwise present at the margins (Bartlett et al.,

2022; Bhutta, Hizmo, and Ringo, 2021; Popick, 2022, and others). Counterfactual

reasoning has been more widely explored in the computer science literature on model

bias, but the focus of this line of research has been primarily on the use of counterfactual
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reasoning to correct or remediate model bias (see Corbett-Davies and Goel, 2018; Jung

et al., 2018; Pierson, Corbett-Davies, and Goel, 2018; Wang, Ustun, and Calmon,

2019). More broadly, there is a long line of research on the use of counterfactuals

to understand natural processes, and more recent discussion of how that might be

extended to model interpretation (Athey and Imbens, 2019; King, Keohane, and

Verba, 1994; Pearl, 2009; Rubin, 1978). We expand on this line of thought by using

gaussian processes to approximate counterfactual outcomes when the true model is

inaccessible.

We proceed as follows. First we will discuss why counterfactuals are an ideal

framework for model interpretation especially when trying to determine if a model

exhibits minority bias. We will identify the major benefits of this approach as well as

hurdles to its use. In the subsequent sections we will introduce gaussian process (GP)

regression as a method to facilitate counterfactual reasoning when (a) new model

predictions cannot be generated and (b) the exact structure of the model is not

accessible. This approach is illustrated in an exercise in which we use GP regression

to identify bias in simulated lending models exhibiting varying degrees of bias.

1.1 model interpretation through counterfactual reasoning

Why not use non-counterfactual methods to explain model behavior? There are

a variety of ways we might consider trying to interpret an ML model’s behavior.

The first and most appealing in the context of classical econometrics is a simple

interpretation of fitted model parameters. When using machine learning models,

however, such an approach is usually infeasible if for no other reason than the sheer

number of fitted parameters and because ML models are frequently not linear in their

parameters.

Without interpreting model parameters, we might instead consider describing

model behavior in terms of feature importances. This approach, however, is a much

weaker way of describing model behavior and, while it might point to which model

inputs are most influential on a model’s behavior, it does not provide insight into

the magnitude of effect of model inputs nor does it account for complex relationships

between model inputs.
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An alternative approach is to characterize model behavior in terms of aggregate

model behavior. For example, we might describe the effect of a variable, p, on a model,

f , by calculating the aggregate difference in model outcomes between one class of

observations and another, E[f(x)|x(p) = 1]−E[f(x)|x(p) = 0]. This risks overlooking

important control variables, may mask discrimination where it does occur and runs

up against important selection type effects (the independent variables distribution

between minority and non-minority classes may be fundamentally different). For

additional discussion, see Bertrand and Duflo (2017, pg 7) in which the authors argue

that, to ascertain whether a model is biased, we want and need to understand model

behavior at the margins (i.e. at the level of the individual observation).

Counterfactual reasoning is an alternative to these approaches. We use the term

counteractuals here in the sense in which it is used in King, Keohane, and Verba

(1994), Pearl (2009), and Rubin (1978). To be precise, consider a model y = f(x)

where x is a P -length vector of inputs and where we can distinguish the p-th entries in

x from all other entries in x by writing x = (x(p), x(¬p)). For a given observation, the

counterfactual on p differs from the observation only in terms of p: x′ = (x′(p), x(¬p)).

If f is deterministic, then we can understand the change in y under the counterfactual

on p to be f(x)− f(x′)

Counterfactual reasoning is appealing because it allows us to explain the behavior

of a model regarding specific observations in light of changes to its inputs. That is,

it explains the behavior of a model for a particular outcome by contrasting it with

model outputs under alternative (what-if ) scenarios. This allows us to describe model

behavior even if it is a black box where the particular shape or nature of f is unknown.

Further, we can compare a specific observation to a variety of counterfactuals to

recover measures of feature importance and marginal effects and we can aggregate

comparisons to counterfactuals across many observations to characterize aggregate

effects. Of course, actually employing counterfactual reasoning is often challenging

as in nearly all observational settings the fundamental problem of causal inference

prevents us from directly measuring/observing this causal effect. That is, since we

cannot observe both a thing (x) and its counterfactual (x′), we cannot observe the

outcomes that follow from a thing (f(x)) and its counterfactual (f(x′)).

It is interesting to note that the fundamental problem of causal inference is

primarily limiting when we are talking about causality in the physical world. For
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the purposes of explaining ML, however, we are talking about causality as it relates

to the behavior of mathematical models. If we have access to the model we can

easily generate actual (f(x)) and counterfactual (i.e. potential) outcomes (f(x′))

and thereby easily assess the causal effect of changes in model inputs on the model

outputs. This makes counterfactual reasoning a compelling and powerful framework

to consider when trying to explain the behavior of complex models.

Despite the fact that it is more readily possible to explore counterfactuals when

considering model behavior, there are two hurdles that encumber its use in practice.

First, we may not have direct access to the model, model software or fitted parameters

that would be necessary to generate new model predictions from counterfactual

observations. Second, even if we can submit counterfactual observations to the model

and generate new model predictions, it is possible that the posited counterfactuals are

implausible. Implausible counterfactuals are not very problematic for linear models.

For ML models, however, they pose a unique hazard as ML models tend to perform

poorly/erratically on data that is too dissimilar from the training data used to fit the

model.

The contribution of this paper, therefore is to introduce gaussian processes as a

technique that overcomes these hurdles and enables the characterization of model

behavior through the lens of counterfactual inference. More specifically, we introduce

GP regression as a technique that enables reasoning about a model’s behavior without

direct access to the model itself and in such a way that we can quantify our uncertainty

over the model’s functional form. Though we will illustrate this through a discussion

of detecting bias in a model, the general technique should be applicable to many other

scenarios involving the interpretation of complex model behavior.

2 Counterfactual Inference on Black Boxes

Consider a collection of observations X = (x1, x2 . . . xN), from which we can form

a dataset of model inputs and outputs, D = {X, f(X)}. Further, for simplicity,

assume f is deterministic1. One way to think about D is as a low-resolution image or

1This is not wholly unreasonable since, for our purposes, f represents a fitted machine learning
model that, in many cases should admit no random variation. This assumption here serves primarily
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representation of the underlying model function f . Thought of this way, counterfactual

reasoning is simply a matter of upsampling a low-resolution image or, alternatively,

interpolation between known model outcomes2(See Funke and Gronwald, 2009; King

and Zeng, 2006).

There are a number of ways to do interpolation from a finite sample of data. These

range form simple approaches such as linear interpolation to more complex approaches

such as polynomial regression or even generative adversarial networks. We propose

using Gaussian process (GP) regression for this purpose for a few specific reasons.

First, GP regression models can be universal function approximators3. Second, GP

regression can be constructed so that the fitted GP model is constrained to pass

through D exactly (and should therefore pass through all observed data points). This

is useful since we are interested in describing the behavior of a (deterministic) machine

learning model where the model function should exhibit essentially no random variation.

Third GP regression allows us a way to quantify uncertainty over the functional form

of f and thus a way to express uncertainty over the interpolated outcomes from

counterfactuals. Among other things, this is will be important for our ability to

assess the plausibility of counterfactuals.

3 Gaussian Processes

In this section, we present an overview of the intuition behind Gaussian process

regression. It should not be taken as comprehensive. For further detail, consult

Williams and Rasmussen (2006), which provides a much more detailed treatment of

the topic.

Consider a function, f , over an arbitrary (potentially infinite) domain X . One

way to think about this function is to consider the value of the function at any given

to simplify discussion and can be relaxed without loss of generality.
2Where counterfactuals are present in D, they can be used directly for counterfactual reasoning.

I.e. where D contains both xi, f(xi) and x′
i, f(x

′
i) for a deterministic f this may be essentially

possible, but the likelihood tends to decrease in the dimensionality of x. This is typically not
the case, however, and where f is not deterministic (such as with observations of some natural
phenomena), we would generally expect the fundamental problem of causal inference to apply

3This is dependent on choice of kernel function. For the purposes of this paper, we focus on
kernels that can satisfy the universal approximating property as discussed in Micchelli, Xu, and
Zhang (2006).
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point, x ∈ X , as a random variable, ϕx := f(x), following a Gaussian distribution.

We can take the collection of these random variables, Φ = {ϕx}, to define a stochastic

process characterizing f on X . If we further define this process as a Gaussian process,

then the distribution of any finite collection ΦX ⊂ Φ is multivariate Gaussian and

the marginal distribution of any individual ϕx is univariate normal. The Gaussian

process is specified by a mean function, µ(x) and a kernel function k(x, x′) and we

can write the GP as Φ ∼ GP (µ, k). For a given (finite) collection of inputs4, X, we

can draw a sample from the GP, yielding ΦX ∼ N(µ(X),Σ(X,X)), where µ
(X)
i = µ(xi)

and where Σ(X,X) is a covariance matrix with entries Σ
(X,X)
ij = k(Xi, Xj).

Gaussian process regression is a Bayesian method that enables inference about

p(ϕx′ |f(x)) – the distribution of a counterfactual outcome given realized set of inputs

and model outputs, D = {X, f(X)}. With a prior Φ ∼ GP (µ, k), and given D, the

posterior predictive distribution is a GP: Φ|D ∼ GP (µD, KD) where for all x′ ∈ X

µD(x
′) = µ(x′) + Σ(x′,X)(Σ(X))−1(f(X − µ(X))) (1)

KD(x
′) = Σ(x′,x′) − Σ(x′,X)(Σ(X,X))−1Σ(X,x′).

And for a finite collectionX ′ ⊂ X , the posterior predictive distribution is multivariate

normal, i.e. ΦX′|D ∼ N(µD(X
′),ΣKD = KD(X

′)).

Figure 1 shows functions sampled from a GP prior. Figure 2 shows posterior

of this GP after being conditioned on several specific (i.e. known or realized) data

points. The mean function is drawn in black. Note from this two things: that the

conditioned GP passes exactly through the known points and that the uncertainty

about the value of the GP at those points collapses to zero.

If not at this point clear, the behavior of the Gaussian process is primarily governed

by the covariance kernel function5, k. There are many different kernel functions that

we might choose when setting up the GP regression. For our purposes, however, the

ideal choice of kernel is one that demonstrates the universal approximation property6.

4i.e. X = (x1, x2, ...), where each xi ∈ X . Typically, we might think of X as a set of observations,
counterfactuals, datapoints of interest, etc..

5This is so much the case that it is common to choose µ(x) = 0 in the specification of the GP
prior.

6Essentially, this property guarantees that a kernel function can approximate any function in its
reproducing Hilbert space of continuous functions defined on X to an arbitrary degree of precision.
In simpler terms, we can think of this as meaning that the kernel can be used to represent any
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Figure 1: Functions sampled from unconditioned GP

One such kernel is the squared exponential kernel function

kse(x, x
′) = σ2e−

(x−x′)2

2ℓ2 (2)

where ℓ is the characteristic length-scale and σ2 is the variance in the kernel output (a

simple scaling factor). We can think of the characteristic length-scale as controlling

the radius around x in which we expect (f(x), f(x)′) to be similar. Both ℓ and σ2 are

free parameters that can be fit by either frequentest (e.g. maximum likelihood7) or

Bayesian approaches (e.g. MCMC, variational inference).

The SE kernel produces high values where inputs (x, x′) are close together and low

values (near zero) as the distance between them increases. The shape of kse(x = 0, x′)

is loosely Gaussian and is visualized in Figure 3 below. Intuitively, the SE kernel is

continuous functional form. See Micchelli, Xu, and Zhang (2006)
7See Karvonen et al. (2020) for discussion of the asymptotic properties of estimating these

parameters. Estimation of the scale parameter via maximum likelihood is likely to limit the influence
of kernel misspecification and may at worst be ”slowly” overconfident. See Karvonen, Tronarp, and
Särkkä (2019) for additional discussion regarding the length-scale parameter.
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Figure 2: GP conditioned several specific points

appealing because it conveys the notion that we should be confident that (f(x), f(x′))

are similar where (x, x′) are similar and much less certain about whether (f(x), f(x′))

are close when (x, x′) are far apart.

The SE kernel is a special case of the Matern kernel function,

km(x, x
′) = σ2 2

1−ν

Γ(ν)

(√
2ν

||x− x′||22
ℓ

)ν

Kν

(√
2ν

||x− x′||2
ℓ

)
(3)

where K is a modified Bessel function and ν is an additional parameter that governs

the shape of km such that lower values of ν take on a more narrow shape (see figure

3). In practice, higher values of ν drive smoother functions in a fitted GP regression

model. The Matern kernel converges to the SE kernel as ν approaches infinity. The

Matern kernel is useful when the SE kernel seems to produce unrealistically smooth

functions. As with ℓ and σ, the hyperparameter ν can be chosen via maximum

likelihood or bayesian inference. However, in practice ν is often chosen to be one of

{1/2, 3/2, 5/2}.
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Both Matern and SE kernels contain a length-scale parameter ℓ. If we allow for ℓ

to be a vector of equal dimensionality to the input space (i.e. equal in length to x),

we rewrite our kernel function to accommodate,

kse(x, x
′) = σ2e−1/2(x−x′)⊤(Iℓ)−2(x−x′) (4)

km(x, x
′) = σ2 2

1−ν

Γ(ν)

(√
2ν(x− x′)⊤(Iℓ)−1(x− x′)

)ν

Kν

(√
2ν(x− x′)⊤(Iℓ)−1(x− x′)

)
(5)

where I is a p×p identity matrix. As written here, we can reconsider the choice over ℓ

instead terms of a choice over inverse length scale, 1/ℓ2. Doing this, we can see that,

for a particular feature, p, as the corresponding element, 1/ℓ2p tends towards zero, the

contribution of p to k(x, x′) also goes to zero. Optimizing the choice of inverse length-

scale thus acts as a form of implicit regularization on k, reducing or eliminating the

influence of irrelevant features. Kernel functions constructed this way are, fittingly,

called automatic relevance discovery8 (ARD) kernels and are useful when working

with a set of input features, P of which the model function of interest only uses some

unknown combination of features, P ∗ ⊂ P .

8see Williams and Rasmussen (1998) as an example.
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Figure 3: Squared Exponential, Matern (5/2,1/2) kernel comparison
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3.1 Aggregation via PDP

To this point we have focused on why it is useful to look at individual counterfactuals

when assessing bias. But describing the general (aggregate) behavior of a model can

also be useful. Cook et al. (2021) explore ways to do this using partial dependency

functions (Friedman, 2001). We briefly discuss here how GP regression can be used

to give an estimate of the PDP when access to the model is not provided.

Because the GP regression gives us easy-to-use posterior distributions, we can

calculate the pdp quite easily. In principal, the PDP is just the distribution of y′ = ϕx′

marginalizing over x(¬p):

p(y′|x′(p)) =

∫
p(y′|x′(p), x(¬p))p(x(¬p))dx(¬p) (6)

To get a empirical estimate of the PDP, we leverage the fact that any finite set of

ϕx′ is multivariate normal. We can then estimate the PDP from a dataset (denoted

PDPGP ) as a weighted convolution over the counterfactual observations:

PDPGP (x′(p) = q) ∼ N(µ′(q), σ2′(q)) (7)

µ′(q) = 1/N
∑
i

µD(x
′(p) = q, x

(¬p)
i ) (8)

σ2′(q) =
1

N2

∑
i

∑
j

KD

(
(x′(p) = q,x(¬p))

)
ij

(9)

We can use σ2′(q) to construct confidence intervals, but these require some nuanced

interpretation. As constructed here, σ2′(q) quantifies uncertainty over the expected

mean model prediction when p is held constant at x′(p) = q. Specifically, it quantifies

uncertainty that is driven by the variance/covariance in ϕ(x′(p)=q,x(¬p)) that is in turn

driven by both the variance/covariance inD as well as the distance of x′ from points in

D. Accordingly, σ2′(q) can be influenced by the choice of the counterfactual value (q),

the observed (i.e. training) dataset D, and the values used for the non-counterfactual

part9 of x′, i.e. x′(¬p).

9to this point we have assumed that the non-counterfactual part of x′ is the same as the training
data – x′(¬p) = x(¬p). One might imagine using a separate sample of the data to construct x′(¬p),
though this would likely raise issues in using x′ for causal reasoning/inference.
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Figure 4: Simulated example of a model (GBM) PDP and approximate Gaussian
process PDP

For a given function, f , a given dataset, D = {X, f(X)}, and a fitted GP, ΦX′ |D,

the PDPGP will approach the PDP of f estimated from D as D increases in size.

To see this, consider that the ΦX′ |D is a universal approximator10 and that, given

sufficient D, can learn to approximate f to an arbitrary degree of precision. Since

the estimated PDP of f from D is merely the aggregated evaluations of f at various

points, then the evaluation of an approximation of f over the same points should

produce a similar aggregation.

Figure 4 provides an example of a PDP as approximated by the PDPGP of a GP

regression. In this figure, outcome values, Y = (y1, y2 . . . yN), from a randomly drawn

function of several random input variables11, X = (x1, x2 . . . xN). A gradient boosting

model (GBM), f , was trained on {X, Y }, producing a dataset of model inputs and

10this may require some additional assumptions about the GP, namely that f falls within the
RHKS associated to the kernel of the GP.

11Specifically, the outcomes are generated from 3 input features and a total of 500 observations.
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model predictions, D = {X, f(X)}. A Gaussian process regression model was fit to

D. This figure shows, for one of the input variables, p, the PDP of the GBM model

(orange line) quantities of interest, q. This (“true”) PDP is then approximated by

the PDP from the fitted Gaussian process regression. The GP PDP generally tracks

closely to the PDP from the GBM, and exhibits something of a smoothing effect in

comparison to the more jagged shape of the GBM PDP. We can attribute this, in part

to the choice of kernel12, and more generally to the notion that Gaussian processes

can be thought of as a linear smoothers (Williams and Rasmussen, 2006).

Figure 5: PDP-GP svm overlay

12The degree of smoothness is controlled by the choice of kernel. For Matern kernels, this is
controlled largely by the choice of ν, with higher values corresponding to greater smoothness. See 3
for illustration. Further discussion is found in Schulz, Speekenbrink, and Krause (2018), section 3.
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4 Simulation Exercise

An extensive literature has been published that establishes differences in lending

outcomes based protected-class status (e.g. race, gender, etc.). Recent examples

include Popick (2022) and Bhutta, Hizmo, and Ringo, 2021, both of which leverage

new attributes available in the HMDA dataset. This is preceeded by Bartlett et

al. (2022) that looks more narrowly at fintech lending. All studies find at least some

disparity in lending outcomes, but each of these models is dedicated to detecting racial

disparities in the aggregate, while controlling for potential confounds. Moreover, most

studies impose some sort of (usually linear) functional form on their model of lending

outcomes. This is a problematic approach when considering machine learning models

or other models that are inherently non-linear as the nonlinearities may result in a

masking of outcome disparities13.

To highlight the usefulness of GP regression for detecting bias, we conduct a

simulation exercise presented below. In this exercise, a simulated lender uses an ML

model to assign interest rates to home mortgages. We induce bias over the ML model

and examine the model, using a GP regression model to estimate counterfactual

outcomes.

The goals of this simulation exercise are two fold – first, to demonstrate the ability

of the GP to approximate the functional form of the lender’s ML model sufficiently

well as to be able to approximate its PDP (and thereby enable interpretation).

Second, to demonstrate the ability of the GP to estimate counterfactuals sufficiently

well to detect bias at levels similar to those commonly detected in the literature14.

13We illustrate this in appendix A.2.
14For conventional purchase loans, Popick (2022) reports interest rate spreads of about 6 bp,

controlling for other variables and as much as 13 basis points when not controlling for other variables.
This is similar to interest rate differences in Bartlett et al. (2022)
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4.1 Data description and Simulation Process

We begin by collecting a sample of home mortgage applications15, D̃ = {X̃, ỹ}.
Specifically, we collect loan to value (LTV) and debt to income (DTI) ratios along with

credit score16, race (white/non-white), gender, income, and age. The data we examine

comes from the 10th district banks in the first quarter of 2019. Containing loans to

this period and region helps limit the complexity of the DGP that we need to simulate

– sampling from a broader sample of loans would not affect general conclusions of

this exercise.

Following this, we fit a nonlinear, ML model to the data17, f̃ . The fitted ML

model does not include protected status variables and represents the underwriting

model of an unbiased lender18.

Then, we simulate a dataset D = {X, y} which consists of simulated inputs

into the lending model and (biased) model outputs. The values of X are random

draws from a distribution that matches the empirical distribution of X̃. We use X

to simulate lending decisions such that y = f̃(X) + B(X(w)), where B(X(w)) is a

function19 that adds bias on the basis of a race indicator variable, w that returns 1

if a simulated applicant is white and 0 otherwise. By constructing the data this way,

we can control the precise ammount of bias that is exhibited by the model which is

helpful in assessing the performance of the GP regression.

For this exercise we will focus on a GP regression,f fitted to a small training

set which is a subset of D. This GP model is equipped with a Matern 3/2 kernel

with inverse length and scale parameters chosen by maximum likelihood estimation.

15Data comes from a merged dataset consisting of Black Knight McDash Data (MCDASH),
Equifax Credit Risk Insight Servicing (CRISM), and The Home Mortgage Disclosure Act (HMDA).
McDash and Equifax credit reporting information data is anonymized. The HMDA data is similarly
anonymized.

16For credit score, we use the original form of the FICO® score, which ranges from 350-850.
17In the discussion below, this model is a support vector machine, though we have conducted the

exercise with other types of ML models and found the GP regression to provide similar levels of
performance.

18We examined a version of this exercise in which this unbiased model has access to a random
data component that represents an alternative data source for the model to leverage for lending
decisions with low credit-score borrowers, the results are consistent with the results shown here.

19B(x
(w)
i ) = x

(w)
i b for the indiscriminate bias scenario. B(x

(w)
i ) = x

(w)
i b(1 −

x
(credit score)
i −min(credit score)

max(credit score)−min(credit score) ) for the moderated bias scenario. Where b is the size of the bias

in basis points.
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We explore varying sizes of training set to illustrate the impact of sample size on

performance.

4.2 GP Performance and Discussion

The uncertainty over the PDP decreases and the MAP estimate generally becomes

more accurate as the size of the training set grows. Figure 6 shows the PDPGP

approximation of the PDP of f̃ for applicant credit score Score. Note that even where

the number of observations is few (100), the PDP of f̃ falls within the 95% credibility

interval. As the number of observations increases, the size of this credibility interval

becomes more narrow and the MAP of the PDPGP becomes closer to the PDP of f̃ .

Figure 7 shows the PDPGP approximation of the PDP of f̃ for other variables in the

SVM model using a subset of 500 observations from D. They similarly demonstrate

that the PDPGP closely approximates the PDP from the SVM model. Summary

performance statistics for all five variables are provided in Table 1.

Figure 6: Estimating the PDP of an SVM (f̃(X)) for Credit Score

Credit Score Credit Score

Credit Score
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Figure 7: PDPGP and PDP of SVM for other Variables

PDPGP shown in blue, PDP of SVM in orange. Shaded regions reflect 95% credibility interval.
PDPGP estimated from a sample size of N=500

Beyond replicating the PDP of f̃ , the main purpose of the exercise is examine the

GP regression ability to detect model bias. We induce bias in the simulated lender’s

ML model, f̃ on the basis of simulated applicant race (white, non-white). Non-

white applicants in X are relatively rare, consisting of only about 8% of all simulated

observations. This is due to the relative rarity of non-white applicants in the actual

dataset, X̃. Nevertheless, the GP model is capable of capturing the presence of bias

in the data.

We induce model bias in two different ways in this exercise: indiscriminate and

moderated. In the indiscriminate bias implementation, the bias function applies

equally to all non-white applicants, B(X(w)) = (1 − X(w))b where b is the size of

the bias effect in basis points. For the indiscriminate bias, we explore two levels of

bias effect: a small effect at 5 basis points and a larger effect at 18 basis points. The

small effect is roughly the size of the size of bias found in the recent literature. The
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Table 1: RMSE comparison PDP to
PDPGP

RMSE
DTI 0.0023 0.0119 0.0138
LTV 0.0047 0.0089 0.0054
Credit score 0.0022 0.0125 0.0077
Income 0.0020 0.0057 0.0172
Age 0.0017 0.0094 0.0080

N=500 N=200 N=100

larger effect is roughly the size of the standard deviation of f̃(X) and is only slightly

larger than the size of the (13 bp) unconditional difference in interest rates for white

and non-white applicants reported (Popick, 2022, pg 4).

We estimate the bias in the simulated data by comparing the counterfactual

outcomes of each observation. We first fit a gaussian process regression to a sample of

the data and generate estimates of the interest rate for each observation. We then use

the model to predict interest rates for each observation under the counterfactual on the

white/non-white indicator variable, w. we can examine the difference between factual

and counterfactual outcomes to describe the size of the bias on a per-observation basis.

Where the size of the uncertainty over the counterfactual outcome is large, we may

consider the counterfactual as implausible or not otherwise well represented in the

data. In these circumstances, increases in sample size can help reduce the uncertainty.

Figure 8 shows this individual comparison for each observation in a small sample of

200 observations, where the true bias parameter is 18 basis points.

We can aggregate the differences between observed/counterfactual outcomes and

compare to the true value of b. This gives us a sense of how well this technique captures

the true level of bias induced in the data. Table 2 displays aggregate performance

for the indiscriminate bias implementation. Performance is shown for GP regression

models fit using varying sizes of sample observations. For each sample size, the

aggregated (mean) estimated bias is shown for 5 and 18 basis point values of b As the

sample observations grow larger, the detected bias more closely resembles the true

value of the bias parameter, b.

In addition to the indiscriminate bias, we also consider a form of bias that is
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Figure 8: Counterfacutal Comparision of white and non-white applicants, N=200,
b=18
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moderated, or scaled, by another attribute. In this scenario, the bias function is

implemented as B(x
(w)
i ) = x

(w)
i b(1 − x

(credit score)
i −min(credit score)

max(credit score)−min(credit score)
). Using this bias

function, the extent of the disparity in interest rates between white and non-white

applicants decreases linearly in (scaled) credit score with a slope of b. We examine

this scenario under low (10), medium (20) and high (50) values for b.

Figure 9 illustrates the estimated counterfactuals and its effect. The difference

in interest rate between the observed and counterfactual observations are shown. A

black line provides a linear fit of these observations on credit score. In Figure 9 we

can see how the GP model estimates of counterfactual outcomes changes (improves)

with the sample size. We can also note from this the changes in uncertainty from one

observation/counerfactual to the next. Even when the GP model is fit to a sample

size of 500, there are many instances where the model exhibits substantial uncertainty

over the counterfactual outcome. For the regions where this uncertainty remains, even

as sample size increases, it may be the case that the counterfactual is implausible (i.e.
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Table 2: bias detection performance

GP reference

N=100
small 6.8 5
large 8.5 18

N=200
small 9.4 5
large 21.8 18

N=500
small 4.3 5
large 19.2 18

substantially different from the underlying distribution of data used to fit the true

model, f̃).

If the GP regression does a good job of capturing the moderated bias, then

the individual counterfactual predictions from the GP will demonstrate substantial

differences between observed/counterfactual predictions where credit score is low, and

small differences where credit score is high. Moreover a linear fit of these differences on

credit score will exhibit a slope close to b. Table 3 shows the coefficients for a linear fit

of differences between observed and predicted counterfactual outcomes on credit score.

Where the number of observations is low (100) the GP model is not able to accurately

capture the moderated bias, but its performance improves substantially with only

moderate increases in the number of observations. The number of observations needed

to capture the moderated bias depends on the bias size; the GP model converges to

the true value of b more quickly when b is large.

Table 3: GP regression
counterfactuals capture the

moderated bias effect
N=100 3.6 7.9 8.6
N=200 -29.5 -11.0 -58.4
N=500 -19.6 -28.3 -54.9
Reference -10 -20 -50
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Figure 9: GP Regression counterfactual increase in interest rate for large bias
moderated by credit score Score

Credit Score

Credit ScoreCredit Score

Y-axis indicates increase in interest rate when applicant is changed from white to non-white. Each
panel shows a GP Regression model trained on a different number of observations: (clockwise from
top left) 100, 200, 500
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5 Additional Considerations and Conclusion

The use of GP regression should work generally across a wide variety of nonlinear

models. Its use as described in this paper is subject to a number of important

limitations. First, while the ability to approximate the underlying model will generally

improve with the number of observations, the computational cost of fitting a GP

regression model increases with the number of observations in O(N3) Williams and

Rasmussen (2006, p. 171). Most of this computational cost carries through to inference

as the majority of the computational complexity consists of inverting (ΣX) as in

equation 1.

Subsampling the available data can help to reduce the computational cost of model

fitting and inference. The key concern when subsampling from available data is to

achieve a sample that appropriately covers the domain of interest (X ). Random

sampling can achieve this, but is likely inefficient as it will not sufficiently sample

from the edges of the area of interest and will likely produce more samples than

necessary from the center of the distribution. Latin hypercube sampling is one

popular approach to more strategically subsampling from a dataset (see Gramacy,

2020, Chapter 4). More specific to GP regression, inducing point methods have been

proposed to approximation methods can reduce this time. The idea behind these

methods is to choose a specific set of points, m ∈ X that adequately cover the region

of interest, producing a smaller kernel matrix, and reducing computational time from

O(N3) to O(MN2)(Quiñonero-Candela and Rasmussen, 2005, see) with a popular

implementation in Wilson and Nickisch (2015).

Perhaps of greater concern than the computational cost is whether the GP model

converges to an accurate approximation of the underlying model, f . Wynne, Briol,

and Girolami (2021) helps to establish when this should occur and provides advice

to encourage convergence. Wang and Jing (2021) provides additional discussion

about the convergence of estimates of the smoothness parameter, ν and gives an

understanding of convergence for estimating smoothness parameter in terms of number

of required observations

Lastly, the discussion provided in this paper is largely focused scenarios regarding

on continuous, scalar outcomes. The approach can be applied to other types or
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problems such as discrete outcomes or classification problems. Doing this, however,

requires some additional modeling and inference becomes more complicated. Williams

and Rasmussen (2006) provide a very detailed treatment of this topic.

To conclude, understanding models is hard. even linear models, if complicated

enough can be difficult to understand. Counterfactual reasoning is a useful framework

for interpreting a model’s behavior. The approach we have outlined in this paper

hopefully allows researchers to combine counterfactual reasoning with model interpretation,

even when direct access to the model is not available. In this paper we have focused

on model discrimination as an illustrative example of this approach. But the approach

can be used much more generally to understand any black-box process and to hypothesize

about counterfactual outcomes. Application of the GP regression for counterfactual

reasoning should also be considered where it is costly or otherwise difficult to directly

calculate the PDP of a model. As we have seen here, the PDPGP can quite closely

approximate the PDP of a model even if only a relatively small sample of data is

available.
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A Appendix

A.1 Additional figures

Figure 10: Implementation of indescriminate bias of 18 bp, N=100

This figure portrays the implementation of an 18bp bias effect. Round dots in the figure show the
interest rate that would be assigned to applicants if they were white. Red lines are attached to
each non-white observation and indicate the bias effect. The red lines terminate at the interest rate
assigned to those observations. The size of the sample shown is N=100. This figure highlights the
relative rarity with which bias occurs within the sample provided to the GP model.
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Figure 11: Implementation of simple bias, 5 basis points

This figure portrays the implementation of bias as in Figure 10, but for a 5 basis point level of bias, and a
sample size N=200.
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Figure 12: GP regression counterfacutal increase in interest rate at Varying levels of bias
moderated by Credit Score

Credit Score

Credit ScoreCredit Score

Y-axis indicates increase in interest rate when applicant is changed from white to non-white. Each panel
shows a GP Regression model trained on 200 observations at different levels of bias: (clockwise from top
left) 10, 20, 50 basis points.
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A.2 Detecting Bias with Oaxaca Blinder Decomposition

The Oaxaca-Blinder decomposition (Oaxaca, 1973) is a commonly used method for

detecting bias at an aggregate level. The approach relies upon generating split-sample

linear estimates over the dimension of discrimination. In the case of the exercise we

undertake in this paper, this would mean separate estimates for w = 1 and w = 0.

Let the subscript of 0 denote nonwhite and 1 denote white. Then let D0 = f(X0), X0

and D1 = f(X1), X1 and specify linear relationships between f(X) and X:

f(X0) = X0B0 + U0 (10)

f(X1) = X1B1 + U1

where B0 and B1 are vectors of coefficients and U0 and U1 are vectors of residual

terms. ApproximatingB0 andB1 via OLS as b0 and b1, the Oaxaca-Blidner decomposition

of Equation (10) is

mean(f(X0)− f(X1)) = (b1 − b0)︸ ︷︷ ︸
unexplained effect

X0 + b0 (X1 −X0)︸ ︷︷ ︸
endowment effect

(11)

In a correctly specified model, the unexplained effect will capture the level of

discrimination. Table 4 reports the unexplained effect for the moderated bias simulation

exercise. If the decomposition were to appropriately capture disscrimination, then

we would expect the estimated unexplained effect to be statistically significant and

range from 0.03 where b = 10 to 0.15 where b = 50. The results reported in the table

are substantially biased downward and the decomposition only reveals a statistically

significant unexplained effect when the true bias effect size and sample size are at

their largest (50 and 500 respectively). The failure of the decomposition to portray

the discrimination effect is unsuprising and is a direct consequence of the fact that

the nature underlying data generating process is inherently nonlinear.
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Table 4: Oaxaca-Blinder decomposition of moderated bias

Unexplained Effect (b
(credit score)
1 − b

(credit score)
0 )

Bias effect N=100 N=200 N=500
10 0.001 -0.0 0.001

(0.305) (0.58) (0.101)
20 0.002 0.0 0.001

(0.269) (0.316) (0.061)
50 0.003 0.001 0.002

(0.197) (0.098) (0.028)

Values reported are the estimated Credit Score coefficient differences from a
Oaxaca-Blinder decomposition. P-values in parentheses. ∗ indicates p < 0.05
.
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