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1 Introduction

Equilibrium models of asset pricing relate current-period values of claims to future cash

flows to their exposures to fundamental macroeconomic risks borne by investors. In

consumption-based models featuring an Epstein-Zin-Weil recursive utility function (e.g.

Kandel and Stambaugh 1991, Bansal and Yaron 2004, Restoy and Weil 2011 among oth-

ers), uncertainty about long-run macroeconomic growth is emphasized as a primary risk

factor. In these long-run risks models, changes in expected consumption and dividend

growth play important roles in asset valuation. Since asset prices are highly persistent

while observed consumption growth and dividend growth are not, identifying consump-

tion risk factors that can explain movements in asset prices and cash flow data at the

same time is challenging. Explaining asset prices demands highly persistent cash flow

risks while matching observed cash flow data requires that their persistence is low.

Standard long-run risk models resolve this issue by assuming that observed consump-

tion growth is the sum of a small but highly persistent component and a large but serially

uncorrelated component. The resulting small signal-to-noise ratio from observed cash

flow data to the predictable component, however, makes empirical identification difficult,

and teasing out such “easy-to-care” but “hard-to-measure” risks are quite sensitive to

econometric specifications.1 Often these econometric specifications lead to implications

of return and cash flow predictability that are inconsistent with empirical evidence. For

instance, as pointed out by Beeler and Campbell (2012), the predictability of consump-

tion and dividend growth from asset prices implied by the long-run risk model in Bansal

and Yaron (2004) is much higher than in the data. In addition, these models also imply

that priced risk factors that predict future cash flow are distinct from those predicting

excess stock market returns. Lettau and Ludvigson (2005), however, documents strong

evidence of a common component in time-varying expected dividend growth and risk

premium of the aggregate stock market.

One reason that long-run risk models lead to counterfactual implications for pre-

dictability is the assumption of constant market prices of risks. With constant market

prices of risks, long-run risks models attribute time-variations in risk premia entirely

to changes in the quantity of risk (or consumption and dividend growth volatility).

1Schorfheide et al. (2014) argue that estimation with only cash flow data also support the existence of
small but predictable components in cash flows. However, they impose a fairly tight prior for the signal-
to-noise ratio and the posterior of that parameter is close to the upper end of the prior distribution. It
remains to be seen if their result will be robust to a relatively uninformative prior for the signal-to-noise
ratio parameter.
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Predictable consumption growth, while a major risk factor driving asset prices, has no

impact on the dynamics of risk premia.

In this paper we try to resolve this challenge to long-run risks models by using

a more flexible econometric specification of market prices of risks and expected cash

flows. We show that constant market price of risk is not an inherent feature of long-run

risks models, but rather the artificial result of restricting asset price solutions as linear

functions of state variables. We allow small and predictable components in consumption

growth and dividend growth with stochastic volatility and assume recursive preferences

for the representative agent as common in long-run risks models. However, we use a

quadratic approximation for the wealth-consumption ratio instead of the standard linear

approximation. In the context of recursive preferences, this change makes market prices

of risks time-varying. Time-varying market prices of risks introduce additional sources

of time-variation in risk premia and help to avoid the restrictive dichotomy between

expected cash flow and risk premium dynamics found in most long-run risk models.

In our model expected cash flows and risk premia are driven by a common set of risk

factors. Our model also relaxes the restrictive assumption of independence between

expected cash flows and time-varying volatility so that macroeconomic uncertainty can

have a first-order effect on consumption and dividend growth.2

Our modeling strategy follows closely that of Le and Singleton (2010). Different

from the standard approach in long-run risks models, we treat market prices of risks

as free parameters and reverse engineer the cash flow dynamics under equilibrium asset

pricing restrictions. Standard long-run risks models start from tight restrictions on the

evolution of expected cash flows under the real-world probability measure and derive

market prices of risks as functions of parameters governing investors’ preferences and

cash flow processes using equilibrium no-arbitrage conditions. In contrast we take an

agnostic approach to the econometric model of cash flow processes. In our setting,

functional forms of cash flow processes under the real-world probability measure are

not specified ex-ante but are derived from equilibrium no-arbitrage conditions. The

main advantage of this reverse-engineering approach is to allow greater econometric

flexibility of the asset pricing model that follows. For example, the standard long-

run risks models turn out to be special cases of our model when we impose additional

restrictions on market prices of risks and the parameters governing cash flow processes

2Bloom (2009) shows that time-varying uncertainty can have a first-order impact on the aggregate
output in a general equilibrium macro model. Bansal et al. (2014) show that time-varying volatility can
predict consumption growth and asset prices together using a vector-autoregression model.
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under the risk-neutral probability measure.3 In essence, we let market prices of risks to

be free parameters in order to have a more flexible econometric specification for cash

flow processes while retaining a tractable closed-form solution for asset prices.4

Empirical analysis of the U.S. data vindicates that the flexible specification brings the

long-run risk model further closer to the data with regard to cash flow and asset return

predictability as well as risk premium dynamics. With time-varying market prices of

risks, the model can match the fact that the price/dividend ratio mainly predicts excess

market return than cash flows especially at long horizons. Also, by introducing an

additional channel for time-varying risk premium that is not proportional to time-varying

volatility of cash flows, the model can generate more plausible volatility of equity risk

premium. At the same time, the model estimates are consistent with cyclical patterns

of cash flows and asset returns documented in other literature.

Our paper contributes to the empirical study of consumption-based asset pricing

models with recursive preferences and predictable cash flows.5 Following the seminal

work of Bansal and Yaron (2004), a growing body of literature has examined empirically

the role of a small but persistent component in consumption and dividend growth at

explaining stock market returns when the representative agent is characterized by an

Epstein-Zin-Weil recursive utility function. These studies include Bansal, Dittmar and

Lundbald (2005), Bansal, Gallant and Tauchen (2007), Hansen, Heaton and Li (2008),

Bansal, Dittmar and Kiku (2009), Constantinides and Ghosh (2011), Bansal, Kiku and

Yaron (2012), Beeler and Campbell (2012), Yu (2012), Schorfheide, Song and Yaron

(2014) and Belo et al. (2015) among others. One challenge to the quantitative analysis

of these long-run risk models is that the wealth-consumption ratio, a key variable in

the utility function, is unobservable. The standard approach in the existing literature

is to approximate the wealth-consumption ratio as a linear function of the underlying

state variables. This linear approximation often combined with restrictive econometric

specifications of the cash flow processes (e.g. constant leverage ratio) lead to closed-form

solutions to asset prices which make empirical analysis tractable. Our paper extends the

approach in Le and Singleton (2010) to a setting of multiple cash flows. This extension

3Our model can also replicate the main features of habit-formation model of Campbell and Cochrane
(1999) in which consumption growth is i.i.d. but market price of risk is time-varying.

4Even though we treat the market prices of risk as free parameters in the model, they still have clear
economic interpretations. They measure the sensitivity of investor’s consumption claim to fundamental
shocks. In addition, our specification distinguishes volatility shocks from non-volatility shocks.

5See Campbell (2003) and Cochrane (2007) for excellent reviews of consumption-based asset pricing
models. Ludvigson (2012) provide a survey of recent empirical studies of consumption-based asset pricing
models.
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allows us to retain the tractability of the standard long-run risk models with much

more flexible econometric specifications of the cash flow processes such as time-varying

leverage ratios.6

More importantly, the wealth-consumption ratio in our model can be a nonlinear

function of the state variables. This nonlinearity implies time-varying market prices of

risks. As a result, risk premium is time-varying even if the quantity of risk (i.e. volatil-

ity of consumption growth) is constant. In contrast, most long-run risks models rely

exclusively on time-varying quantity of risk as the source of time-varying risk premia.7

We show that a time-varying market price of risk is critical at reconciling long-run risk

models with empirical facts about cash flow and return predictability.

Our paper is organized as follows. In the next section we describe the equilibrium

asset pricing model used in the subsequent empirical analysis. Section 3 explains the

data used in this paper and the econometric methodology. Section 4 discusses the main

empirical results from the estimated equilibrium asset pricing models and Section 5

concludes.

2 A Long-run Risks Model with Time-varying Market Price

of Risk

Below we explain the main assumptions and the setup of the long-run risks model with

time-varying market prices of risks. To facilitate empirical analysis, we subsequently de-

rive the joint likelihood function of cash flow and asset return data. Detailed derivations

and specific cases of the general version of this model can be found in the Appendix.

6Belo et al. (2015) shows that a stationary leverage ratio is key at reproducing the downward-sloping
term structure of equity risk premia in the long-run risk model. To make the price-dividend ratio an
exponential affine function of state variables, they restrict the functional form of the log leverage ratio to
be linear with respect to state variables. While more flexible than the original Bansal and Yaron (2004),
they still impose the restrictive assumption on the leverage process to obtain the affine log price-dividend
ratio.

7One exception is Creal and Wu (2015) who generate time-varying bond risk premium by introducing
a preference shock that has time-varying sensitivity with respect to innovations to long-run consumption
and volatility risks. Much like Campbell and Cochrane (1999), this time-varying sensitivity function
generates the time-varying market price of risk in the stochastic discount factor. In general, this would
imply nonlinear functions for log price/cash flow ratios. Creal and Wu (2015) restrict the drift term of a
preference shock to make equilibrium asset pricing restrictions compatible with the linear approximation
of log price/cash flow ratios. However, they do not empirically evaluate the validity of this restriction
on the drift term of the preference shock.
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2.1 Dynamics of State Variables

We assume that all the state variables relevant for asset pricing are summarized by an

n × 1 Markovian vector, Xt. Under this assumption, equilibrium asset pricing models

would determine asset prices as functions of Xt. For assets with trend growth in cash

flows, price/cash flow ratios would be given as functions of Xt. Without loss of generality,

we consider a class of asset pricing models where a log price/cash flow ratio, zt, is

described by a function of Xt,

zt = f(Xt). (1)

While f(Xt) can be nonlinear, we will use the following approximation for the non-

linear asset pricing function following Le and Singleton (2010) to simplify the analysis:

∆zt+1 ≈ Γ(Xt)
′∆Xt+1, (2)

where Γ(Xt) = ∂f(Xt)
∂Xt

and ∆Xt+1 = Xt+1 −Xt.

Returns of a claim to (log) cash flow, yt, can be obtained by the Campbell-Shiller

(1988) log-linear approximation:8

rt+1 = k0 − k1zt + k2∆zt+1 + ∆yt+1. (3)

where k1 = 1− k2, k2 = ez̄

1+ez̄ and k0 = ln (1 + ez̄)− z̄ez̄

1+ez̄ . z̄ is the steady-state value of

zt and it is given by f(X̄).

We consider two cash flows, log consumption, ct, and log dividend of S&P 500 stock

market index, dt. The normalized prices of the claims to these two cash flows are,

respectively,

zc,t = fc(Xt), (4)

zd,t = fd(Xt), (5)

with holding-period returns given by:

rc,t+1 = kc,0 − kc,1zc,t + kc,2∆zc,t+1 + ∆ct+1, (6)

rd,t+1 = kd,0 − kd,1zd,t + kd,2∆zd,t+1 + ∆dt+1, (7)

8In the data, the approximation error from the linear formula is extremely small. Moreover, in our
estimation we will use returns constructed according to the Campbell-Shiller linear present value formula.
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or approximately,

rc,t+1 = kc,0 − kc,1fc(Xt) + kc,2Γc(Xt)
′∆Xt+1 + ∆ct+1, (8)

rd,t+1 = kd,0 − kd,1fd(Xt) + kd,2Γd(Xt)
′∆Xt+1 + ∆dt+1. (9)

2.2 Investor Preferences

We assume investors are endowed with Epstein-Zin (1989) recursive preferences in which

the log stochastic discount factor (mt+1) is given by

−mt+1 = −θ log δ +
θ

ψ
∆ct+1 − (θ − 1)rc,t+1, (10)

we then have

−mt+1 = −θ log δ − (θ − 1)kc,0 + (θ − 1)kc,1fc(Xt)

− (θ − 1)kc,2Γc(Xt)
′∆Xt+1 + γ∆ct+1.

(11)

In the utility function, 0 < δ < 1 is the time discount factor, γ > 0 is the parameter

of risk-aversion, ψ > 0 is the parameter of intertemporal elasticity of substitution and

θ = 1−γ
1−1/ψ . rc,t+1 is the return on the asset that pays aggregate consumption each period

as its dividend.

2.3 Cash Flow Dynamics under Asset Pricing Restrictions

The utility function imposes equilibrium restrictions on asset returns. These restrictions

can be conveniently expressed as moment conditions under the risk neutral probability.

In particular, we can define the risk-neutral probability measure, Q, by the following

Radon-Nikodym derivative,

ξt,t+1 =

(
dQ
dP

)
t,t+1

=
emt+1

EPt (emt+1)
. (12)

where EPt denotes conditional expectation under the physical probability measure P.

Let rf,t be the risk-free interest rate, then

erf,t =
1

EPt (emt+1)
= EPt

(
ξt,t+1e

−mt+1
)

= EQt
(
e−mt+1

)
, (13)
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and in equilibrium we must have

erf,t = EQt (erc,t+1) = EQt (erd,t+1) , (14)

where EQt denotes conditional expectation under the risk-neutral probability measure Q
defined in (12).

We suppose that, under the risk-neutral probability measure Q,

∆ct+1 = g̃c(Xt) + σc(Xt) ε̃c,t+1, (15)

∆dt+1 = g̃d(Xt) + σd(Xt) ε̃d,t+1, (16)

∆Xt+1 = Φ̃(Xt) + Σ(Xt) η̃t+1, (17)

where ε̃c,t+1, ε̃d,t+1 and η̃t+1 are all multivariate standard normal under Q.9 Let ρcd

be the correlation coefficient between ε̃c,t+1 and ε̃d,t+1. We assume that ε̃c,t+1, ε̃d,t+1

are independent of η̃t+1.10 Moreover, let Ω(Xt) = Σ(Xt)
′Σ(Xt). Most long-run risks

models typically assume that g̃c(Xt) and g̃d(Xt) are linear functions of Xt.
11 Then they

use asset pricing restrictions to determine coefficients in log price/cash flow ratios. In

contrast, we assume specific functional forms of log price/cash flow ratios and back out

expectations of cash flows using asset pricing restrictions. Hence, if we use quadratic

functions to approximate log price/cash flow ratios, g̃c(Xt) and g̃d(Xt) that satisfy asset

pricing restrictions can be nonlinear functions of Xt.

Under the assumption of the multivariate normality of ε̃c,t+1, ε̃d,t+1 and η̃t+1 condi-

tional onXt, the equilibrium conditions, (13) and (14), impose cross-equation restrictions

on the conditional mean of consumption and dividend growth (under the risk neutral

probability measure).

EQt (e−mt+1) = e−θ ln δ−(θ−1)kc,0+(θ−1)kc,1fc(Xt)

× e−(θ−1)kc,2Γc(Xt)′Φ̃(Xt)+γg̃c(Xt)

× e
1
2

(θ−1)2k2
c,2Γc(Xt)′Ω(Xt)Γc(Xt)+

1
2
γ2σ2

c (Xt),

(18)

9When volatility risk factors are included, it might be necessary to have gamma distributions for
some part of ηt+1 in order to guarantee the positivity of volatility. However, many long-run risks models
originated from Bansal and Yaron (2004) assume normal distribution for stochastic volatility because
the approximation error of truncating negative variances is typically small. We adopt this approach too.

10It is a straight forward extension to allow ε̃c,t+1 and ε̃d,t+1 to be correlated with η̃t+1.
11One exception is Belo et. al. (2015) who allow dividend growth to be nonlinear functions of expected

consumption growth through a time-varying leverage ratio.
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EQt (erc,t+1) = ekc,0−kc,1fc(Xt)

× ekc,2Γc(Xt)′Φ̃(Xt)+g̃c(Xt)

× e
1
2
k2
c,2Γc(Xt)′Ω(Xt)Γc(Xt)+

1
2
σ2
c (Xt),

(19)

EQt (erd,t+1) = ekd,0−kd,1fd(Xt)

× ekd,2Γd(Xt)′Φ̃(Xt)+g̃d(Xt)

× e
1
2
k2
d,2Γd(Xt)′Ω(Xt)Γd(Xt)+

1
2
σ2
d(Xt).

(20)

In equilibrium, EQt (e−mt+1) = EQt (erc,t+1) = EQt (erd,t+1), it then follows that

g̃c(Xt) = − θ

1− γ
[ln δ + kc,0 − kc,1fc(Xt) + kc,2Γc(Xt)

′Φ̃(Xt)]

− θ(2− θ)
2(1− γ)

k2
c,2Γc(Xt)

′Ω(Xt)Γc(Xt)−
1 + γ

2
σ2
c (Xt),

(21)

and

g̃d(Xt)− g̃c(Xt) = (kc,0 − kd,0)− [kc,1fc(Xt)− kd,1fd(Xt)]

+ [kc,2Γc(Xt)− kd,2Γd(Xt)]
′Φ̃(Xt) +

1

2
[σ2
c (Xt)− σ2

d(Xt)]

+
1

2
[k2
c,2Γc(Xt)

′Ω(Xt)Γc(Xt)− k2
d,2Γd(Xt)

′Ω(Xt)Γd(Xt)].

(22)

Notice that second moments of state variables as well as market prices of risks implied

by these state variables directly influence conditional means of consumption growth and

dividend growth under the risk-neutral measure. We have not taken any stance on the

precise interpretation of Xt yet. Since there are two asset pricing restrictions, we can pin

down g̃c(Xt) and g̃d(Xt) by assuming functional forms for all the other variables showing

up in the cash flow dynamics. For example, we can assume σc(Xt), σd(Xt), and Ω(Xt)

are linear functions of some variables in Xt. In addition, we can assume Φ̃(Xt), fc(Xt),

and fd(Xt) are linear with respect to Xt. In this case, we can determine conditional

means of consumption growth and dividend growth as affine functions of Xt.

To estimate our model, we need to derive the likelihood function of asset prices

and cash flows that respects these equilibrium conditions under the physical probability

measure. Let fP (·|Xt) and fQ(·|Xt) denote the conditional probability density func-

tion (pdf) of a random variable under physical and risk-neutral probability measures
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respectively. It then follows that

fP (∆ct+1,∆dt+1,∆Xt+1|Xt) =
e−mt+1

EQt (e−mt+1)
fQ(∆ct+1,∆dt+1,∆Xt+1|Xt), (23)

where

e−mt+1

EQt (e−mt+1)
= e−

1
2

(θ−1)2k2
c,2Γc(Xt)′Ω(Xt)Γc(Xt)− 1

2
γ2σ2

c (Xt)

× e−(θ−1)kc,2Γc(Xt)′Σ(Xt)η̃t+1+γσc(Xt)ε̃c,t+1 .

(24)

Using the above probability measure transformation, we derive the dynamics of cash

flows and state variables under the physical probability measure P,

∆ct+1 = g̃c(Xt) + γσc(Xt)
2 + σc(Xt) εc,t+1, (25)

∆dt+1 = g̃d(Xt) + γρcdσc(Xt)σd(Xt) + σd(Xt) εd,t+1, (26)

∆Xt+1 = Φ̃(Xt)− (θ − 1)κc,2Ω(Xt)Γc(Xt) + Σ(Xt) ηt+1 = Φ(Xt) + Σ(Xt)ηt+1, (27)

where εc,t+1, εd,t+1, and ηt+1 are standard normal random variables under P. Notice that

the conditional mean of consumption increases proportional to risk aversion and volatility

of innovations to unexpected consumption growth. Since agents dislike the variation of

consumption growth, they discount the conditional mean of consumption growth under

the risk neutral measure as the compensation for risk. The conditional mean dynamics

of state variables also change in a similar reason. In this case, the persistence of Xt

can be affected by probability measure transformation. To illustrate this point, suppose

that Xt follows an affine process under Q measure so that Φ̃(Xt) = Φ̃Xt. Let’s assume

further that volatility is constant and that fc(Xt) is a quadratic function of Xt. The

latter implies that Γc(Xt) is an affine function of Xt. For example, it can be λc,1 +HcXt.

As a result, Xt follows an affine process under P measure but the persistence of Xt is

different from that under Q measure as shown below:

EPt (∆Xt+1) = [Φ̃− (θ − 1)kc,2Ω(Xt)Hc]Xt − (θ − 1)kc,2Ω(Xt)λc. (28)

In this case, preference parameters governing θ and market price of risk parameters

Hc can increase or decrease the persistence of Xt under P measure compared to Q
measure even in the constant volatility case where Ω(Xt) = Ω.
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2.4 Risk Premium Dynamics

Our flexible specification of log price/cash flow ratios implies much richer dynamics of

equity risk premium. For instance, the expected excess return on the dividend claim

(red,t+1) can be time-varying even without time-varying volatility in cash flow dynamics

because the market price of risk can be time-varying. In contrast, most long-run risks

models that assume the linear approximation to log price/cash flow ratios can generate

time-varying risk premium only through time-varying volatility in cash flow dynamics.

As Beeler and Campbell (2012) point out, these long-run risks models tend to imply

much tighter relations between stock market return and stock market volatility than

observed in the U.S. data. Our framework shows that this limitation is not an inherent

feature of long-run risk models, but a result of the linear approximation to log price/cash

flow ratio.12 To illustrate this point more clearly, we consider the following expression

of the equity risk premium (after ignoring Jensen’s inequality term):

Ept (red,t+1) ≡ Ept (rd,t+1)− EQt (rd,t+1) = (Ept − E
Q
t ) [kd,2∆zd,t+1 + ∆dt+1] . (29)

Under our assumptions, the above equity risk premium can be decomposed into

multiple sources.

EPt
(
red,t+1

)
= (Ept − E

Q
t )
[
kd,2Γd(Xt)

′∆Xt+1 + ∆dt+1

]
= −kd,2kc,2(θ − 1)Γd(Xt)

′Ω(Xt)Γc(Xt) + γρcdσc(Xt)σd(Xt)

=
γ − 1/ψ

1− 1/ψ
kd,2kc,2Γd(Xt)

′Ω(Xt)Γc(Xt) + γρcdσc(Xt)σd(Xt).

(30)

The equity risk premium consists of two terms. The first term corresponds to the

long-run risk channel that shows up only when recursive preferences (γ 6= 1
ψ ) are com-

bined with predictable components in cash flows (Xt). The second term corresponds

to the standard consumption risk channel that pops out even in the power utility case.

Notice that the first term can be time-varying if Γd(Xt) and Γc(Xt) are time-varying,

even if Ω(Xt) is constant. Since the linear approximation to log price/cash flow ratios

makes Γc(Xt) and Γd(Xt) constant, the equity risk premium under that assumption

12A similar point was made by Le and Singleton (2010) who argued that constant market price of risk
in most long-run risks models was the artifact of the linear approximation to the log price/consumption
ratio.
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can be time-varying only through time-varying volatility, subjecting models to the criti-

cism raised by Beeler and Campbell (2012). In contrast, our framework allows multiple

sources that drive time-varying risk premium and is immune to this criticism.

2.5 Solutions for Steady State Log Price/Cash Flow Ratios

So far, we have treated kc,0, kc,1, kc,2, kd,0, kd,1, and kd,2 as exogenous. However, they

depend on the steady-state values of price-consumption and price-dividend ratios. To

obtain the model-consistent approximation of the return process, we have to solve for the

steady state value of Xt, X, under the physical probability measure. These values can

be found by setting Φ(X) = 0, where Φ(Xt) = EPt (∆Xt+1). When the number of state

variables is nx, the condition provides nx nonlinear equations for nx variables. Once we

obtain X, we can plug that into the pricing formula to get zc = fc(X), which in turn

provides values for kc,0, kc,1 and kc,2. For kd,0, kd,1, and kd,2, we equate the historical

mean of the log price/dividend ratio to the steady state log price/dividend ratio. We

also numerically check the uniqueness of solutions. In the subsequent empirical analysis,

we exclude parameter values that do not guarantee the existence of the unique solution

of the steady-state log price/consumption ratio.

2.6 The Relation to Standard Long-run Risks Models

Standard long-run risks models following Bansal and Yaron (2004) start from specify-

ing physical measure dynamics of cash flows and derive price-cash flow ratios from Euler

equations. Therefore, parameters governing the physical measure dynamics of cash flows

pin down fc(Xt) and fd(Xt) together with preference parameters in the utility function.

In contrast, our model treats parameters determining the functional form of fc(Xt) and

fd(Xt) as free parameters and derive the physical measure dynamics of cash flows con-

sistent with asset pricing restrictions. Indeed, we can nest a typical long-run risk model

as a special case of our setup if we impose additional restrictions on model parameters in

order to make the physical measure dynamics of cash flows consistent with assumptions

in the standard long-run risks model.

For example, consider the one-factor long-run risk model with constant volatility.13

13The appendix discusses similar restrictions in a two factor long-run risks model with stochastic
volatility. In that case, we need to impose additional restrictions on parameters governing stochastic
processes of Xt under the risk-neutral measure as well as market prices of risks. The additional restriction
is required to interpret one of the risk factors as expected consumption growth uncorrelated to volatility.
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Assume that fc(Xt) and fd(Xt) are linear with respect to Xt as λc,0 +λc,1Xt and λd,0 +

λd,1Xt, respectively. In this case, the only risk factor priced in asset markets is the

expected consumption growth factor. By imposing asset pricing restrictions, we obtain

the following dynamics of consumption growth and dividend growth.

EPt (∆ct+1) = constant+
1

1− 1/ψ

(
kc,1 − kc,2φ̃

)
λc,1Xt, (31)

EPt (∆dt+1) = constant+
1

ψ − 1

(
kc,1 − kc,2φ̃

)
λc,1Xt +

(
kd,1 − kd,2φ̃

)
λd,1Xt. (32)

If we let

λc,1 =
1− 1/ψ

kc,1 − kc,2φ̃
, λd,1 =

q − 1/ψ

kd,1 − kd,2φ̃
,

We then have

EPt+1∆ct+1 = constant+Xt, (33)

EPt+1∆dt+1 = constant+ qXt. (34)

In this case, Xt is the expected consumption growth and q is the leverage ratio as

specified in Bansal and Yaron (2004). Since fc(Xt) and fd(Xt) are affine functions,

Γc(Xt) = λc,1 and Γd(Xt) = λd,1 are constants, meaning the market price of risk for

Xt is also a constant. In contrast, our model allows nonlinear (for example, quadratic)

specifications for fc(Xt) and fd(Xt) and incorporate time-varying market price of risk

by letting Γc(Xt) and Γd(Xt) depend on Xt.

2.7 The Relation to the External Habit Model

Another leading consumption-based asset pricing model is that of Campbell and Cochrane

(1999) which features an external habit in consumption. In contrast to the long-run

risks model, the habit model assumes i.i.d. growth rate of cash flow and attributes all

volatilities in asset price to variations in expected returns. Risk premia are time-varying

because of variations in the representative consumer’s risk aversion as her consumption

fluctuates around a slow-moving habit level. In particular, the model assumes that the

log stochastic discount factor is

mt+1 = log β − γ∆ct+1 − γ∆st+1, (35)

12



where st is the log surplus consumption ratio that measures the deviation of consumption

from an external habit. st is assumed to have the following law of motion (under the

physical probability measure):

st+1 − s̄ = ρ(st − s̄) + λt(∆ct+1 − µc), (36)

and

∆ct+1 = µc + σcεt+1, (37)

where εt+1 is i.i.d. standard normal and is the only shock in the model. The key element

in the model is the “sensitivity” function λt that governs the conditional covariance

between consumption growth and the surplus-consumption ratio. λt is assumed to be a

function of st and produces time-varying risk premia in the model.

We show below that, by imposing additional restrictions on the market prices of

risk, we can also obtain a version of our model with i.i.d. consumption growth and

time-varying risk premia. As in the habit model, we assume there is only one shock

in the model and consider a single-factor quadratic model of asset prices where log

wealth-consumption ratio is given by

fc(xt) = λ0 + λ1xt +
1

2
λ2x

2
t (38)

and

Γc(xt) =
∂fc(xt)

∂xt
= λ1 + λ2xt (39)

where λ2 6= 0. We assume that, under the risk-neutral probability measure, the laws of

motion for consumption, ct, and the state variable, xt, are given by:

∆ct+1 = g̃c(xt) + σcε̃t+1 (40)

∆xt+1 = φ̃xt + σxε̃t+1 (41)

where ε̃t+1 is an i.i.d. shock with standard normal distribution under the risk neutral

probability measure.

As in (21), the equilibrium condition under the recursive utility function then implies
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that

g̃c(xt) = − θ

1− γ
[ln δ + kc,0 − kc,1fc(xt) + kc,2Γc(xt)φ̃xt]

+
1

2
[(1− θ)kc,2Γc(xt)σx + γσc]

2 − 1

2
[kc,2Γc(xt)σx + σc]

2

(42)

It then follows that, under the physical probability measure, the law of motion for

consumption growth is:

∆ct+1 = g̃c(xt) + [(1− θ)kc,2Γc(xt)σxσc + γσ2
c ] + σcεt+1 (43)

where εt+1 is i.i.d. normal under the physical probability measure.

It is then easy to show that,

EPt (∆ct+1) = constant (44)

under the following restrictions on λ1 and λ2:

λ1 = − [(1− θ)γ − 1](1− γ)

θφ̃
σxσcλ2 (45)

λ2 =
kc,1 − 2kc,2φ̃

(1− γ)(2− θ)k2
c,2σ

2
x

(46)

While consumption growth is i.i.d., the risk premium on the consumption claim,

however, is time-varying because of time-varying market price of risk:

(EPt − E
Q
t )rc,t+1 = [kc,2Γc(xt)σx/σc + 1](EPt − E

Q
t )∆ct+1 (47)

or

(EPt − E
Q
t )rc,t+1 = [(1− θ) + γ]kc,2Γc(xt)σxσc + (1− θ)k2

c,2Γ2
c(xt)σ

2
x + γσ2

c (48)

In the habit model of Campbell and Cochrane (1999), xt is introduced into the model

through the utility function with the economic interpretation of consumption habit. In

our model, xt can be interpreted as an exogenous risk premium shock that is perfectly

correlated with the consumption shock.14

14The model changes very little if we assume innovations to ∆xt+1 is imperfectly correlated with
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3 Data and Estimation Methodology

3.1 Data

We use the annual stock price and dividend data for S&P index as well as 1 year nominal

yield data available on Robert Shiller’s website(http://www.econ.yale.edu/ shiller/data.htm).

We construct ex-ante real interest rate by subtracting expected CPI inflation from

ARMA (1,1) model from the 1 year nominal bond yield data. Real per capital consump-

tion growth is also available on the same website. For the estimation of an equilibrium

model, we use data from 1929 to 2013. Figure 1 provides the time series plots of data

used in the estimation.

3.2 Econometric Methodology

Once we have the joint pdf for (∆ct+1,∆dt+1,∆Xt+1|Xt), the joint pdf of (∆ct+1,∆dt+1, rd,t+1−
∆dt+1, rf,t|Xt) can be easily obtained by a change of variable using the delta method. In

particular, if we let Yt = (∆ct+1,∆dt+1, rd,t+1 −∆dt+1, rf,t)
′, we can have a (nonlinear)

state space representation of cash flows and asset returns under P as follows:15

Yt+1 = Y (Xt, εc,t+1, εd,t+1, ηt+1, uf,t), (49)

Xt = Xt−1 + Φ(Xt−1) + ηt, (50)

where uf,t is a normal random variable to capture a measurement error in the real

risk-free rate.16

If we take the linear approximation to the price-cash flow ratio and assume constant

volatility and the affine process for Xt, the above model becomes a linear state space

model. In this case, we can use Kalman filter to back out latent Xt from observed data.

However, if not all these assumptions hold, the model becomes a nonlinear state space

model and Kalman filter is no longer optimal to back out Xt. In this case, we can use

innovations to ∆ct+1.
15We consider rd,t+1 − ∆dt+1 rather than rd,t+1 because the independence between ηt+1 and

(εc,t+1, εd,t+1) makes the implementation of particle filtering computationally more efficient. This set-up
assures that the evaluation of probability density for all the particles can be vectorized, which speeds up
our computation in MATLAB substantially.

16We set the standard deviation of uf,t equal to the standard deviation of rf,t. In our implementation
of particle filtering, the standard deviation of measurement error plays like a bandwidth parameter in
a nonparametric density estimation. This relatively high value allows more particles to be used in the
calculation of the likelihood, resulting in the smooth approximation of likelihood.
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simulation based particle filtering to back out Xt and calculate the associated likelihood.

Let ϑ be a vector of model parameters to be estimated. ϑ consists of model parame-

ters determining the state space representation. Once we construct the likelihood of Yt

under P measure, p(Yt|ϑ), we can obtain the maximum likelihood estimate of ϑ by simply

maximizing p(Y |ϑ) over the parameter space. In this paper, we take the Bayesian ap-

proach and add prior information about ϑ, p(ϑ), into the likelihood and obtain posterior

draws of ϑ. Bayesian methods can better characterize the uncertainty related to model

parameters conditional on relatively short sample observations.17 As in Schorfheide et

al. (2014), we apply Markov Chain Monte Carlo (MCMC) methods to obtain poste-

rior draws of ϑ. Although these draws are generated by Markov Chain that allows

serial correlations between draws, under certain regularity conditions, these draws be-

have like independently distributed draws from the stationary distribution p(ϑ|Y ). Once

we obtain posterior draws of ϑ, we can perform posterior simulation of Xt to compute

moments of interest including cash flow and stock market return predictive regression

coefficients.18

In estimation, we calibrate two constant parameters in fc(Xt) and fd(Xt) (λc,0 and

λd,0) conditional on other model parameters to match the average consumption growth

and log price-dividend ratio with the model implied unconditional means. They are

difficult to identify from the likelihood because unconditional means of observed variables

under P measure are highly nonlinear functions due to asset pricing restrictions.19

4 Empirical Analysis

4.1 Model Specification and Prior Distribution

In empirical analysis, we consider a two factor long-run risks model in which time vary-

ing expected consumption growth and time-varying consumption volatility are two risk

factors. We apply the following quadratic approximation to log price/cash flow ratios.

17Our sample covers a long period of time, but the number of observations is relatively short because
date are available at the low frequency.

18We use the likelihood function approximated by particle filters inside the Metropolis-Hastings al-
gorithm that is used to generate posterior draws of parameters. For details of this algorithm, see the
Chapter 9 of Herbst and Schorfheide (2015).

19In particular, second moments of Xt are highly nonlinear functions of model parameters.
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fc(Xt) = λc,0 + λ′c,1Xt +
1

2
X ′tHcXt ,

fd(Xt) = λd,0 + λ′d,1Xt +
1

2
X ′tHdXt , (51)

(52)

where, for i = c, d,

λ′i,1 =

(
λi,11

λi,12

)
, Hi =

(
hi,11 0

0 hi,22

)

and hence

Γc(Xt) = λc,1 +HcXt (53)

Γd(Xt) = λd,1 +HdXt (54)

Dynamics of Xt are given by the following VAR(1) process under Q:

∆Xt+1 = Φ̃Xt + Σ(Xt)η̃t+1

=

(
φ̃11 φ̃12

0 φ̃22

)
Xt +

(
φx(
√
α+ x2,t) 0

0 σ2

)
η̃t+1

(55)

where α is non-negative, and η̃t+1 is a 2× 1 i.i.d. standard normal random vector under

Q. The volatility of unexpected consumption growth is σc(Xt) =
√
α+ x2,t and the

volatility of unexpected dividend growth is σd(Xt) = φd
√
α+ x2,t. Since the volatility

factor x2,t is assumed to follow an AR(1) process independently of x1,t, we can clearly

distinguish the volatility factor from the non-volatility factor.

To elicit prior distributions of parameters, we start from calibrated values of param-

eters in Bansal and Yaron (2004). In their setup, market price of risk parameters (λc,1

and λd,1) are nonlinear functions of other model parameters. So we can generated prior

distribution of λc,1 and λd,1. For quadratic terms of log price/cash flow ratios, we use

diffuse priors centered around zero. For other parameters, we draw on Schorfheide et al.

(2014) and Bansal and Yaron (2004) to set prior distributions. Table 1 summarizes our

prior specification of model parameters.
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4.2 Posterior Estimates

Table 2 shows posterior distribution of model parameters. In addition to the baseline

model in which log price/cash flow ratios are assumed to be quadratic functions of state

variables, we also estimate the nested model that log price/cash flow ratios are restricted

to be linear functions of state variables. In both models, posterior distributions imply

that state variables are highly persistent. In standard long-run risks models, preference

parameters are calibrated to imply that agents prefer the early resolution of uncertainty

(γ > 1
ψ ) and a positive shock to expected consumption ratio increases the log price-

consumption ratio through a strong intertemporal substitution channel (ψ > 1). Under

that combination of model parameters, λc,11 > 0 and λc,12 < 0. While our posterior

mode estimates of γ and ψ satisfy such restrictions, λc,12 > 0. This occurs in our

model because the risk-free rate declines substantially in response to a positive volatility

shock. Therefore, the consumption claim that promises to provide the same payoff

stream in the future is valued more highly. Posterior distributions of hc,11 and hd,11

deviate significantly from prior distributions centered around zero while the difference

between prior and posterior distributions is relatively minor in case of hc,22 and hd,22.

The finding suggests that time-varying market prices of risks are mostly driven by shocks

to expected cash flow factor (x1,t).
20 At the posterior mode, hc,11 < 0 and hd,11 > 0. The

semi-elasticity of price/consumption ratio is decreasing in x1,t while the semi-elasticity

of price/dividend ratio is increasing in x1,t.
21 This suggests that the constant-leverage-

ratio assumption maintained in most long-run risk models may be too restrictive and

not consistent with data.

The general expression of the equity premium is given in (30). The part of the equity

premium associated with x1,t in our quadratic model is given by:

γ − 1/ψ

1− 1/ψ
kd,2kc,2

{
(hc,11λd,11 + hd,11λc,11)x1,t + hc,11hd,11x

2
1,t

}
σ2

1,t

where σ2
1,t is the conditional variance of x1,t+1 which depends only on the volatility factor

x2,t. We can easily verify that, at the posterior mode of model parameters, holding the

quantity of risk, σ2
1,t, constant, this term is decreasing in x1,t. The equity premium

20Although the posterior mode estimate of hd,22 is substantially positive, the equity risk premium is
determined by Γc(Xt)Ω(Xt)Γd(Xt) and the low value of hc,22 mitigates the role of time-varying market
price of volatility risk in driving equity risk premium.

21Note that ∂fc(Xt)
∂x1,t

= λc,11 + hc,11x1,t,
∂fd(Xt)
∂x1,t

= λd,11 + hd,11x1,t, where fc(Xt) and fd(Xt) are log

price/consumption ratio and log price/dividend ratio respectively.
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is counter-cyclical even in the absence of time-varying volatility (see more discussions

below).

The posterior estimate of the relative volatility of a persistent shock to cash flows

(φx) is much higher than the typical value reported in the long-run risks literature. For

instance, the posterior 90% interval of the corresponding parameter in Schorfheide et

al. (2014) is [0.03 ,0.04] while our estimate is [0.20, 0.47]. In standard long-run risks

model, cash flows become much more predictable, the higher this parameter value is.

Jacking up this value in the calibrated one-factor long-run risks model of Bansal and

Yaron (2004) to our posterior estimate implies that the first-order autocorrelation of

consumption growth is twice as high as in the sample.22 This does not happen in our

model because the expected cash flow factor, x1,t can be much less persistent under

the physical probability measure than that under the risk-neutral probability measure

because of time-varying market prices of risks that depends on x1,t. In fact, from (27),

we can see that in our quadratic model,

EPt (x1,t+1) =
{
φ̃11 − (θ − 1)kc,2hc,11σ

2
1,t

}
x1,t + ...

where σ2
1,t is again the conditional variance of x1,t+1. At the posterior mean, φ̃11 is

-0.014, implying a very persistent expected cash flow process under the risk probability

measure. But since θ < 0 and hc,11 < 0, the persistence of x1,t can be greatly reduced in

the physical probability measure.23 This feature of the quadratic model helps reconcile

long-run risk models with the data on return and cash flow predictability. To see this

point more clearly, we turn to posterior predictive analysis.

4.3 Posterior Predictive Analysis

In this section, we examine how well our model fits sample moments in cash flows and

asset returns data by using posterior predictive analysis. As in Schorfheide et. al. (2014),

we simulate data from our posterior parameter estimates and then calculate moments

from each simulated dataset. We compare distribution of these predictive moments

with sample moments from the data. Table 3 shows moments of cash flows and asset

returns that we try to match. Except for volatilities of stock market return and the log

price/dividend ratio, both linear and quadratic models match first and second moments

22In the sample data, the autocorrelation of consumption growth 0.31 while the model-implied persis-
tence of consumption growth becomes about 0.6 when we increase φx to 0.3.

23Note that both kc,2 and σ2
1,t are positive.
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of cash flows and asset returns relatively well in the sense that sample moments from the

data are included in the posterior 90% interval. The moment match is relatively poor

for correlation coefficients. Nonetheless, except for the autocorrelation of the risk-free

rate, the sample moment is not that far from posterior predictive distributions.

One of the main criticisms against long-run risks models highlighted by Beeler and

Campbell (2012) is the high predictability of cash flows by the log price/dividend ratio

implied by the model. To address this issue, we consider following regressions:

H∑
h=1

∆ct+h = c0 + c1zd,t + residc,t+H , (56)

H∑
h=1

∆dt+h = d0 + d1zd,t + residd,t+H ,

H∑
h=1

(rd,t+h − rf,t+h−1) = h0 + h1zd,t + residr,t+H .

In the data, the log price/dividend ratio predicts excess market return especially at

a longer horizon as Table 4 shows. The linear model with long-run risks restrictions

implies much higher predictability of cash flows at a longer horizon than in the data.

It also implies much smaller predictability of excess market return. While the linear

model without long-run risks restrictions improves the predictability of cash flows, it still

generates much smaller predictability of excess market return than in data. Overall, our

quadratic model does better in both dimensions. In particular, the log price/dividend

ratio strongly predicts excess market return than cash flows at a long horizon to be

consistent with data.

4.4 Estimates of Expected Cash Flows and Risk Premium

Since our model determines cash flow dynamics under the physical probability measure

by using asset pricing restrictions, the model can generate counterfactual cash flow

dynamics if asset pricing restrictions are misspecified. To look into this issue, we generate

model-implied expectations of cash flows at the posterior mode estimates of the quadratic

model. Figures 2 and 3 show time-series plots of expected cash flows with realized data.

While the volatilities of realized cash flows are dominated by unexpected innovations, the

cyclical pattern of model-implied expectations looks reasonable. During most recession

periods identified by the National Bureau of Economic Research (NBER), expectations
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of cash flows decline and recover at the end of recession periods.

Assured that implications of cash flow dynamics are reasonable, we now examine the

model-implied risk premium dynamics. Beeler and Campbell (2012) argue that long-run

risks models along the line of Bansal and Yaron (2004) imply that the relation between

stock market volatility and stock price is too tight. The fundamental reason for this

is that the market price of risk is constant and the variation of risk premium comes

only through time-varying volatility of cash flows. Our quadratic model relaxes this

restrictions by allowing the market price of risk to be time-varying and not proportional

to volatility. To see if the model is successful in generating reasonable estimates for

both volatility and risk premium, we turn to model-implied estimates of consumption

volatility and equity risk premium.

First, Figure 4 shows the model-implied estimates of volatility of consumption growth

at the posterior mode of the quadratic model. Again, during most recessionary periods

identified by the NBER, our consumption volatility increases at the beginning and starts

to decline around the end of recessions. It is noticeable that consumption volatility

jumped up substantially during the recession of 2007-9. Overall, our volatility estimates

are counter-cyclical which are consistent with the literature emphasizing the recessionary

force of an uncertainty shock (Bloom (2009), for example).

Second, we turn to the model-implied estimates of equity risk premium to see if the

model can generate a reasonable counter-cyclical pattern of risk premium. We compute

the equity risk premium in terms of the expected excess return as explained in the

previous discussion. Figure 5 shows two estimates of equity risk premium. The solid

line shows the time-series plot of the equity risk premium at the posterior mode of the

quadratic model. It is clear that the model-implied equity risk premium estimates show

a counter-cyclical pattern as much noted in the literature.

To highlight the role of the time-varying market price of risk, we plot another risk

premium estimates purely through time-varying volatility in the dash-dot line. These

alternative estimates of the equity risk premium quite closely follow the volatility esti-

mates because the equity risk premium is linear with respect to volatility in this case.

These alternative estimates are more volatile than the realized excess market return,

which is impossible in theory. The realized excess market return is the sum of the ex-

pected excess return and the unexpected component. Since the two components are

orthogonal by definition, the volatility of the realized excess market return is also the

sum of the volatility of each component. In the data, the volatility of the realized ex-
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cess market return is 19% while the volatility of alternative estimates of the expected

excess return is 22%. In contrast, the volatility of the expected excess return with the

time-varying market price of risk is 8%. Our findings suggest that the quadratic model

provides reasonable implications for both cash flow and risk premium dynamics.

5 Conclusions

We develop and estimate an equilibrium asset pricing model with recursive preferences

in which the market prices of risk are time-varying. Based on insight from Le and

Singleton (2010), we use a quadratic approximation to the log price/consumption ratio

to derive time-varying market prices of risk from a preference-based model. We extend

their approach to a setting with multiple assets and cash flows to identify and estimate

consumption risk priced in the aggregate stock market. We use the long-run historical

data on cash flows and asset returns in the U.S. and estimate the model using Bayeisan

methods. By doing so, we try to overcome two counterfactual implications of long-run

risks models following Bansal and Yaron (2004): the over-predictability of cash flows by

asset returns and the tight relation between risk premium and return volatility. We argue

that both criticisms can be attributed to the assumption of the constant market prices

of risk and restrictive econometric specifications for the expected cash flow processes in

the existing literature. Once we relax these assumptions, the log price/dividend ratio

predicts excess market return more strongly than cash flows especially at a longer horizon

as in the data. Also, the estimated model generates counter-cyclical risk premium that is

of a plausible magnitude and is not proportional to consumption volatility. Our results

suggests that a flexible specification of the market prices of risk in an otherwise standard

long-run risks model goes a long way to reconciling model implied cash flow and risk

premium dynamics with the historical data.
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A Linear Model

Here, we consider a restricted version of our model in which log price/cash flow ratios

are assumed to be linear. Let Xt = (x1,t, x2,t)
′. Log price/cash flow ratios are as follows:

f(Xt) = λ0 + λ′Xt

= λ0 +

(
λ11

λ12

)′
Xt

(57)

where Xt follows the same dynamics as our quadratic model described in the text.

Apply the model to claims on consumption and dividend streams,

fc(Xt) = λc,0 + λ′cXt, (58)

fd(Xt) = λd,0 + λ′dXt. (59)

where, for i = c, d,

λ′i =

(
λi,1

λi,2

)
,

and hence

Γc = λc , Γd = λd. (60)

We further assume that, under Q,

∆ct+1 = g̃c(Xt) +
√
α+ x2,t ε̃c,t+1 (61)

∆dt+1 = g̃d(Xt) + φd
√
α+ x2,t ε̃d,t+1 (62)

where for i = c, d, σi > 0, and ε̃i,t+1 is standard normal under Q. We denote the

correlation coefficient between ε̃c,t+1 and ε̃c,t+1 as ρcd. We assume ε̃i,t+1 is independent

of η̃t+1.

Equilibrium asset pricing restrictions under the recursive utility function imply:

g̃c(Xt) = − θ

1− γ
[ln δ + kc,0 − kc,1fc(Xt) + kc,2Γ′cΦ̃Xt]

− θ(2− θ)
2(1− γ)

k2
c,2Γ′cΩ(Xt)Γc −

1 + γ

2
(α+ βx2,t)

(63)
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and

g̃d(Xt)− g̃c(Xt) = (kc,0 − kd,0)− [kc,1fc(Xt)− kd,1fd(Xt)]

+ [kc,2Γc − kd,2Γd]
′Φ̃Xt +

1

2
(1− φ2

d)(α+ x2,t)

+
1

2
[k2
c,2Γ′cΩ(Xt)Γc − k2

d,2Γ′dΩ(Xt)Γd]

(64)

Under the physical probability measure P,

EPt (∆Xt+1) = Φ̃Xt − (θ − 1)kc,2Ω(Xt)Γc (65)

EPt (∆ct+1) = g̃c(Xt) + γ(α+ x2,t) (66)

EPt (∆dt+1) = g̃d(Xt) + γρcdφd(α+ x2,t) (67)

and

∆Xt+1 − EPt (∆Xt+1) = Σ(Xt) ηt+1 (68)

∆ct+1 − EPt (∆ct+1) =
√
α+ x2,t εc,t+1 (69)

∆dt+1 − EPt (∆dt+1) = φd
√
α+ x2,t εd,t+1 (70)

where  ηt+1

εc,t+1

εd,t+1

 ∼ N
0,

 I 0 0

0 1 ρcd

0 ρcd 1




B Relation to the Two Factor Long-run Risks Model

The standard long-run risks model in which x1,t corresponds to fluctuations in expected

consumption growth and x2,t is the volatility of the unexpected consumption growth

can be obtained as a special case of the linear model described in the previous section.

Recall that the expected consumption growth in the linear model is given by

EPt (∆ct+1) = constant +
θkc,1
1− γ

λ′cXt −
θkc,2
1− γ

λ′cΦ̃Xt

−
θ(2− θ)k2

c,2

2(1− γ)
λ2
c,11x2,t −

1− γ
2

x2,t.

(71)
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In the standard long-run risk model, it is assumed that EPt (∆ct+1) = x1,t, this is

equivalent to imposing the following restriction on λc:

θ

1− γ
(kc,1I − kc,2Φ̃′)λc −

θ(2− θ)k2
c,2

2(1− γ)
(0 , λ2

c,11)′ − 1− γ
2

(0 , 1)′ =

(
1

0

)
(72)

where I is a 2× 2 identity matrix.

Similarly, the expected dividend growth is given by

EPt (∆dt+1) = constant + EPt (∆ct+1)− γx2,t

− (kc,1λc − kd,1λd)′Xt + (kc,2λc − kd,2λd)′Φ̃Xt

+
1

2
(1− φ2

d)(0 , x2,t)
′ +

1

2
(k2
c,2λ

2
c,11 − k2

d,2λ
2
d,11)(0 , x2,t)

′

+ γρcdφd(0 , x2,t)
′.

(73)

The standard long-run risk model assumes that

EPt (∆dt+1) = qEPt (∆ct+1)

where q is constant representing the leverage ratio.

This is equivalent to imposing the following restrictions on λd,(
q − 1

0

)
=

[
−γ +

1

2
(1− φ2

d) + γρcdφd

]
(0 , 1)′

+
[
−(kc,1λc − kd,1λd) + Φ̃′(kc,2λc − kd,2λd)

]
+

1

2
(k2
c,2λ

2
c,11 − k2

d,2λ
2
d,11)(01).

(74)

Finally, two state variables are independent under the physical probability measure

in the standard long-run risks model. This restricts ˜phi12 through the following equation

EPt (∆Xt+1) = Φ̃Xt − (θ − 1)kc,2Ω(Xt)Γc = constant+

(
φ̃11 0

0 φ̃22

)
Xt. (75)

More specifically, φ̃12 is restricted to be (θ − 1)kc,2λc,11φ
2
x.
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C The Risk-free Rate

We can use the fact erf,t = EQt (erc,t+1) to obtain the model-implied real risk-free rate:

rf,t = kc,0 − kc,1fc(Xt) + kc,2Γc(Xt)
′Φ̃(Xt) + g̃c(Xt)

+
1

2
k2
c,2Γc(Xt)

′Ω(Xt)Γc(Xt) +
1

2
σ2
c (Xt)

(76)

Using the solution for g̃c(Xt) in (21), we can solve for the risk-free rate as rf,t = h(Xt),

where

h(Xt) = − θ

1− γ
ln δ +

(
1− θ

1− γ

)[
kc,0 − kc,1fc(Xt) + kc,2Γc(Xt)

′Φ̃(Xt)
]

+
1

2

(
1− θ(2− θ)

1− γ

)
k2
c,2Γc(Xt)

′Ω(Xt)Γc(Xt)−
γ

2
σ2
c (Xt)

(77)

Therefore we can add rf,t+1 to the observation equation of the non-linear state-space

model in (49):

rf,t = h(Xt) + uf,t (78)

where uf,t is an i.i.d. measurement error for the risk-free rate.

D Likelihood Evaluation

In this appendix we explain the detailed derivations of the joint likelihood function of

cash flows and asset returns.

We let fP (·|Xt) and fQ(·|Xt) denote the conditional pdf of a random variable under

physical and risk-neutral probability measures respectively. It then follows that

fP (∆ct+1,∆dt+1,∆Xt+1|Xt) =
e−mt+1

EQt (e−mt+1)
fQ(∆ct+1,∆dt+1,∆Xt+1|Xt) (79)

where

e−mt+1

EQt (e−mt+1)
= e−

1
2

(θ−1)2k2
c,2Γc(Xt)′Ω(Xt)Γc(Xt)− 1

2
γ2σ2

c (Xt)

× e−(θ−1)kc,2Γc(Xt)′Σ(Xt)η̃t+1+γσc(Xt)ε̃c,t+1

(80)
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By the assumptions in (15, (16) and (17), fQ(∆ct+1,∆dt+1,∆Xt+1|Xt) is multi-

variate normal under the risk-neutral probability measure with conditional mean and

conditional variance given by, respectively,

H̃(Xt) =

 g̃c(Xt)

g̃d(Xt)

Φ̃(Xt)

 (81)

and

Ξ(Xt) =

 σ2
c (Xt) ρcdσc(Xt)σd(Xt) 0

ρcdσc(Xt)σd(Xt) σ2
d(Xt) 0

0 0 Ω(Xt)

 =

(
Ξ1(Xt) 0

0 Ω(Xt)

)
(82)

By (80), the joint conditional pdf of (∆ct+1,∆dt+1,∆Xt+1)′ under the physical prob-

ability measure is also multivariate normal with the same conditional variance Ξ(Xt) and

a conditional mean given by

H(Xt) = H̃(Xt) + Ξ(Xt)Λ(Xt) (83)

where

Λ(Xt) =

 γ

0

−(θ − 1)kc,2Γc(Xt)

 (84)

Let YX,t = (∆ct+1,∆dt+1,∆Xt+1)′, we then have:

fP (YX,t+1|Xt) =
1√

2π|Ξ(Xt)|1/2
e−

1
2

(YX,t+1−H(Xt))′Ξ(Xt)−1(YX,t+1−H(Xt)) (85)

Notice that the marginal distribution of Xt+1 is given by

fPX(Xt+1|Xt) =
1√

2π|Ω(Xt)|1/2
e−

1
2

(Xt+1−Xt−Φ(Xt))′Ω(Xt)−1(Xt+1−Xt−Φ(Xt)) (86)

where

Φ(Xt) = Φ̃(Xt)− (θ − 1)kc,2Ω(Xt)Γc(Xt)

If we let Yt+1 = (∆ct+1,∆dt+1, rd,t+1−∆dt+1, rf,t)
′ = (Y ′1,t, rd,t+1−∆dt+1, rf,t)

′, the
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model can then be casted in a nonlinear state space form as follows:

Y1,t+1 = A1(Xt) +B1(Xt)H1(Xt) + εt+1, (87)

rd,t+1 −∆dt+1 = kd,0 − kd,1fd(Xt) + kd,2Γd(Xt)
′(Φ(Xt) + ηt+1), (88)

rf,t = h(Xt) + uf,t, (89)

Xt = Xt−1 + Φ(Xt−1) + ηt. (90)

where24

A1(Xt) =

(
0

0

)
, B1(Xt) =

(
1 0

0 1

)
and

fP (εt+1|Xt) =
1√

2π|B1(Xt)Ξ1(Xt)B1(Xt)′|1/2
e−

1
2
u′1,t+1B1(Xt)Ξ1(Xt)B1(Xt)′u1,t+1 (91)

Since ηt+1 and uf,t are i.i.d. normal random variables independent ofXt, it is straight-

forward to write down the pdf of observed variables p(rd,t+1 −∆dt+1, rf,t|Xt).

24H(Xt) is given in (83)
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Table 1: Prior Distribution

Parameters Domain Density Para(1) Para(2)

λc,11 R Normal 5.6 3
λc,12 R Normal 0 50
λd,11 R Normal 16.81 5
λd,12 R Normal 0 103

hc,11 R Normal 0 6
hc,22 R Normal 0 50
hd,11 R Normal 0 10
hd,22 R Normal 0 104

γ R+ Gamma 10 5
ψ R+ Gamma 1.5 .5
δ [0, 1) Beta .995 .003√
α R+ Inverse Gamma .01 4
φx R+ Gamma 0.05 0.05
φd R+ Gamma 5 6

φ̃11 (-1,0) Uniform -.9999 -.0001

φ̃12 (-1,1) Uniform -.9999 .9999

φ̃22 (-1,0) Uniform -.9999 -.0001
ρcd [0,1) Beta .2 .1
σ2 R+ Inverse Gamma .25× 10−4 4

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝
σ−ν−1e−νs

2/2σ2

, a and b for the Uniform distribution from a to b.
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Table 2: Posterior Distribution

Parameters Quadratic Linear
Prior 90% Posterior Mode Posterior 90% Posterior Mode Posterior 90%

λc,11 [ 0.71, 10.75] 5.94 [ -1.48, 8.27] 2.65 [-0.57, 5.33]
λc,12 [-85.72, 79.41] 27.83 [-68.25, 49.33] 58.12 [-89.35, 100.99]
λd,11 [ 8.54, 24.99] 17.69 [ 15.77, 29.07] 24.81 [17.28, 30.99]
λd,12 [ -1539, 1796] 96.84 [-278.66, 411.92] 663.87 [-802.78, 1462.41]
hc,11 [-10.40, 9.07] -11.01 [ -12.08, 3.97] 0 Fixed
hc,22 [-80.37, 82.86] 0.01 [ -2.49, 0.82] 0 Fixed
hd,11 [-15.96, 16.75] 9.69 [ -8.71, 21.46] 0 Fixed
hd,22 [ -1615, 1674] 1310.48 [ -1453, 1512] 0 Fixed
γ [ 2.15, 17.66] 7.46 [ 0.95, 7.26] 3.63 [2.37, 19.05]
ψ [ 0.61, 1.69] 1.36 [ 1.06, 1.90] 1.17 [0.75, 1.95]
δ [ 0.989, 0.999] 0.997 [ 0.989, 0.998] 0.996 [0.989, 0.999]√
α [ 0.006, 0.022] 0.024 [ 0.023, 0.039] 0.011 [0.008, 0.050]
φx [0.00001, 0.1219] 0.397 [ 0.203, 0.466] 0.280 [0.200, 0.408]
φd [7 ×10−7, 12.5] 3.42 [2.83, 3.96] 3.65 [2.53, 4.25]

φ̃11 [-0.978, -0.082] -0.014 [-0.063, -0.0002] -0.002 [-0.232, -0.0001]

φ̃12 [-0.994, 0.799] -0.869 [-0.991, 0.488] -0.171 [-0.977, 0.782]

φ̃22 [-0.990, -0.102] -0.005 [-0.088, -0.003] -0.015 [-0.086, -0.003]
ρcd [ 0.043, 0.348] 0.218 [0.198, 0.480] 0.388 [0.196, 0.501]
σ2 [1 ×10−5 , 4.5 ×10−5] 0.0001 [0.00006, 0.00014] 0.0001 [0.00007, 0.00015]

Notes: If we fix hc,11, hc,22, hd,11, hd,22 at 0, we get the linear model as a special case.
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Table 3: Posterior Predictive Moments

Moments Data Quadratic Linear Linear with BY (2004)
5% 50% 95% 5% 50% 95% 5% 50% 95%

Mean (∆c) 2.01 0.23 1.48 2.93 0.82 1.63 2.03 -0.04 1.43 1.77
StdDev (∆c) 2.96 2.86 3.64 5.08 2.86 3.58 4.43 2.91 3.87 5.35

AC1 (∆c) 0.31 -0.11 -0.07 0.10 -0.11 -0.07 0.02 -0.11 -0.07 0.004
Mean (∆d) 1.30 -13.24 0.18 5.01 -2.49 2.76 7.55 -7.35 -2.00 1.64

StdDev (∆d) 10.94 10.41 13.02 17.51 10.78 13.42 16.78 10.67 14.98 20.23
AC1 (∆d) 0.17 0.05 0.10 0.27 0.04 0.15 0.44 0.11 0.19 0.42

Corr (∆c,∆d) 0.51 0.11 0.29 0.43 0.14 0.30 0.45 0.18 0.31 0.45
Mean(rd) 8.80 -9.28 2.57 7.81 1.48 6.55 10.36 -0.89 2.73 5.76

StdDev (rd) 18.40 24.49 30.94 39.22 22.12 28.43 34.69 23.97 33.56 44.95
AC1 (rd) 0.07 -0.08 -0.05 -0.02 -0.09 -0.05 -0.002 -0.05 -0.03 -0.001

Corr (∆c, rd) 0.13 -0.07 0.002 0.08 -0.07 0.02 0.11 -0.06 -0.003 0.07
Mean (rf ) 1.47 -0.45 0.76 2.73 -0.11 0.75 1.55 -0.66 0.94 1.56

StdDev (rf ) 3.11 3.10 3.16 3.48 3.10 3.15 3.43 3.12 3.18 3.34
AC1 (rf ) 0.82 0.04 0.07 0.19 0.04 0.06 0.18 0.05 0.08 0.15
Mean (zd) 3.36 2.22 3.02 7.59 2.53 3.17 3.95 1.60 2.58 3.09

StdDev (zd) 0.46 0.55 0.75 1.10 0.33 0.68 0.85 0.46 0.70 1.04
AC1 (zd) 0.90 0.85 0.92 0.93 0.71 0.92 0.94 0.84 0.89 0.93

Notes: If we fix hc,11, hc,22, hd,11, hd,22 at 0, we get the linear model as a special case.
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Table 4: Predictability of Cash Flows and Excess Market Return by the
Price-dividend Ratio

Moments Data Quadratic Linear Linear with BY (2004)
50% 90% Interval 50% 90% Interval 50% 90% Interval

R2(∆ct+1) 0.075 0.006 [0,0.165] 0.004 [0, 0.094] 0.018 [0.003, 0.075]

R2(
∑5
j=1 ∆ct+j) 0.001 0.056 [0.0006,0.452] 0.03 [0.0003, 0.337] 0.180 [0.078, 0.382]

R2(∆dt+1) 0.08 0.1 [0.044, 0.307] 0.145 [0.029, 0.587] 0.211 [0.121, 0.492]

R2(
∑5
j=1 ∆dt+j) 0.02 0.196 [0.073, 0.458] 0.267 [0.049, 0.512] 0.358 [0.236, 0.551]

R2(rd,t+1 − rf,t) 0.02 0.027 [0.003,0.051] 0.011 [0.0001, 0.035] 0.007 [0.0001, 0.012]

R2(
∑5
j=1 rd,t+j − rf,t+j−1) 0.27 0.164 [0.021,0.266] 0.088 [0.001, 0.178] 0.06 [0.003, 0.098]

Notes: If we impose restrictions on market price of risks and state variable dynamics under the

risk-neutral measure in the linear model, we get BY (2004) specification.
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Figure 1: Annual Data for Cash Flow and Asset Prices: 1890-2013
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Notes:The colored area denotes the recession period identified by the National Bureau of Eco-

nomic Research.
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Figure 2: Expected Consumption Growth
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Notes:The colored area denotes the recession period identified by the National Bureau of Eco-

nomic Research. The solid line denotes realized consumption growth and the dash-dot line

represents expected consumption growth implied by the quadratic model at the posterior mode.
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Figure 3: Expected Dividend Growth
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Notes:The colored area denotes the recession period identified by the National Bureau of Eco-

nomic Research. The solid line denotes realized dividend growth and the dash-dot line represents

expected dividend growth implied by the quadratic model at the posterior mode.
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Figure 4: Consumption Volatility
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Notes:The colored area denotes the recession period identified by the National Bureau of Eco-

nomic Research. Estimates of consumption volatility are obtained from the posterior mode of

the quadratic model.
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Figure 5: Equity Risk Premium
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Notes:The colored area denotes the recession period identified by the National Bureau of Eco-

nomic Research. The solid line denotes the model-implied equity risk premium at the posterior

mode of the quadratic model. The dash-dot line represents the model-implied equity risk pre-

mium at the posterior mode of the quadratic model when the market price of risk is restricted

to be constant by setting hc,11, hc,22, hd,11 and hd,22 at zero.
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