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Abstract 
 

Evidence is presented which suggest that an important measure of the apparent geographic localization of 
R&D spillovers may be an artifact of industrial agglomeration.  A production function framework is used 
to examine the role of geographic and technological proximity for inter-firm spillovers from R&D.  The 
largest spillovers are found to flow between firms in the same industry.  However, spillovers within 
narrowly defined technological groups do not appear to be attenuated by distance.  Geographic proximity 
does appear to attenuate spillovers that cross narrowly defined technological boundaries, suggesting these 
spillovers may play a role in the agglomeration of a diversity of industrial activity. 

 
JEL classification:  O3, R1, L6 
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1.  INTRODUCTION 

Identification of the importance of geographic and technological proximity for research 

and development (R&D) spillovers is complicated if firms in an industry agglomerate for 

reasons exclusive of localized inter-firm knowledge spillovers.1  The purpose of this 

paper is to distinguish the importance of these two factors for R&D spillovers.  Direct 

evidence of spillovers is obtained from a firm-level production function framework that 

includes geographically and technologically proximate R&D stocks.  Spillovers are 

found to be largest among firms within the same narrowly defined industry.  However, 

these spillovers are largely insensitive to inter-firm distance.  While R&D spillovers 

across narrowly defined industry boundaries are smaller in magnitude, they appear to be 

attenuated by distance.  Consequently, R&D spillovers may be a force contributing to the 

formation of industrially diverse agglomerations. 

Knowledge spillovers will play a role in agglomeration if they are attenuated by 

distance.  This mechanism will result in localization, or the agglomeration of similar 

industrial activity, if knowledge spillovers benefit only firms in the same industry.  

Urbanization, or the agglomeration of a diversity of industrial activity, will occur if 

knowledge spills across industry boundaries. 

A significant body of empirical evidence establishes the importance of spillovers 

from R&D.2  A number of studies examine the role that geographic and technological 

distance play in determining spillover intensity.  Audretsch and Feldman (1996) find 

                                                           
1 Among the firms considered in this study, for example, those within 100 miles of one another are over 
three times more likely to be in the same four-digit SIC group than are any two randomly chosen firms.  
And firms within 50 miles of one another are over four times more likely to come from the same four-digit 
SIC.  While this degree of agglomeration may result if distance attenuates intra-industry spillovers, it may 
also result if firms in an industry benefit from a shared intermediate input or some natural advantage. 
2 Cameron (1996) provides a recent survey. 
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greater clustering of innovative activity in industries where knowledge externalities are 

likely to be relatively important, providing indirect evidence of a geographic bound to 

knowledge spillovers.3  Jaffe (1986) finds that firms active in research intensive 

technology groups enjoy higher research productivity and higher returns to R&D, 

suggesting technological proximity accentuates spillovers.  Adams and Jaffe (1996) 

consider both the importance of technological and geographic proximity for R&D 

spillovers.  While they find evidence that spillovers are attenuated by both factors, the 

study focuses on spillovers at the intra-firm level.  Moreover, data limitations do not 

permit the authors to consider the two hypotheses simultaneously.4 

The next section discusses the data and extends the production function 

framework recommended by Hall and Mairesse (1995) to include external stocks of 

R&D.5  Empirical results are summarized in section three.  The implications of these 

findings are discussed in the concluding section. 

2.  EMPIRICAL SPECIFICATION AND DATA SELECTION 

Hall and Mairesse (1995) is the point of departure, where firm output, Yit, is represented 

with a conventional Cobb-Douglas production technology:6 

Y AK e C L eit it
t

it it
it= $ π λ α β ε      (1) 

where Cit is capital, Lit is labor, α and β are their respective output elasticities, and ε is an 
                                                           
3 Jaffe et al. (1993) and Jaffe and Trajtenberg (1999) provide evidence of localization of knowledge 
spillovers from inventive activity. 
4 “Unfortunately, there are inherent limitations of the R&D data to identify the effects of distance along 
both geographic and technological dimensions.  To estimate both effects one would need data revealing the 
joint distribution of research activity along the two dimensions.  Instead we observe just the marginal 
distributions.” Adams and Jaffe (1996) p. 703. 
5 See Orlando (2000) for a detailed exposition. 
6 Hall and Mairesse (1995) find that the production function framework is preferred to the rate of return 
formulation.  Furthermore, through comparison to the ‘semi-reduced form’ approach, the authors find the 
production function does not yield biased estimates of R&D elasticity when controls for permanent firm 
effects are included. 
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i.i.d. disturbance.  The function  represents a firm-specific ‘state of technology’ 

which summarizes all knowledge relevant to firm i’s production possibilities at time t.  

Assuming R&D is the determinable component of knowledge relevant to the production 

process, then  represents all own and external stocks of R&D relevant to firm i 

production. 

AK eit
t$ π λ

$Kit

                                                          

The empirical specification parameterizes the state of technology using a 

straightforward application of the knowledge production function (Pakes and Griliches 

1984): 
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where lower case variables represent natural logarithms.  External stocks of R&D are 

sorted into four spillover pools.  (GNTN)i represents the subset of firms that are both 

geographically and technologically near to firm i.  (GNTZ)i represents the subset of firms 

that are geographically near but technologically distant from firm i.  (GZTN)i, and (GZTZ)i 

are defined respectively.  Dit is a vector of location, sector, and time-specific dummy 

variables, included to control for a broad range of technological opportunity shocks and 

other narrowly defined fixed-effects.7 

Capital, labor, and own R&D stocks are assumed to influence output 

contemporaneously.  Spillover pool stocks are assumed to influence production at a one-

year lag to reflect the additional time it takes to internalize publicly available 

 
7 Given that firms share spillovers pools of the same size, the pool coefficients obtained in (2) imply that 
large firms receive a relatively larger benefit than small firms from the same size spillover pool.  Since the 
non-rival nature of R&D is the central point of motivation, this assumption is intuitively appealing.  
Additional support is provided by Jaffe (1986) who reports benefits from R&D spillovers increasing in 
own scale of R&D and Henderson and Cockburn (1996) who conclude that larger research efforts in the 
pharmaceutical industry are more productive because they allow economies of scope to be realized. 
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knowledge.8  Between-firm, within-firm, first-difference, and several long-difference 

regressions are estimated in place of the total panel model presented in (2).  A two stage 

least squares (2SLS) procedure is used to control for simultaneity bias.  Lagged values of 

own capital, labor, and R&D are used as instruments. 

The present analysis considers firms in SIC 35, Industrial, Commercial 

Machinery, and Computer Equipment.9  Annual firm-level financial data are obtained 

from Standard & Poor’s COMPUSTAT database.  Input and output deflators are obtained 

from the Bureau of Labor Statistics website.  County-level latitude and longitude data are 

obtained from the U.S. Geological Survey Geographic Names Information System. 

Firm sales is used to proxy for output.  Estimation error associated with this proxy 

will be confined to the constant term if materials charges are a fixed proportion of sales 

and market power results in a constant mark-up.  Basu (1996) reports that material inputs 

are nearly perfectly correlated with output.10  While it is arguable that mark-up is 

constant across all observations in the panel, it may be so across firms in a particular 

industry.  In this case, industry dummies will control for variation in market power.  

Assuming market power is constant across time for a given firm, the firm fixed effects 

regression models will control associated estimation error. 

The capital stock variable is constructed by accumulating capital spending 
                                                           
8 Evenson (1968) suggests the peak weight from R&D flows occurs at five to eight year lags and little 
contribution is received from R&D expenditures older than 10 to 16 years.  Wagner (1968) concludes the 
lags are much shorter for industrial R&D, perhaps reflecting the more applied nature of private R&D 
expenditures.  Assuming a constant rate of R&D expenditure, the 15 percent depreciation rate assumed in 
this study corresponds to an average R&D stock vintage of six years.  The results reported below are robust 
to a variety of lag structures. 
9 A review of the National Science Foundation publication Research and Development in Industry: 1996 
indicates that SIC 35 is one of the four most R&D intensive two-digit classifications; the others being 36 
(Electrical Equipment), 37 (Transportation Equipment), and 28 (Chemicals and Pharmaceuticals). 
10 In addition, Mairesse and Hall (1996) find that including materials directly into production function 
regressions can give misleading results and conclude that estimates based on sales are not badly biased. 
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following Salinger and Summers (1983).  A correction for acquisitions and divestitures 

per Chirinko et al. (1999) avoids exclusion of firms engaged in mergers over the sample 

period. 

The R&D stock variable is constructed from R&D expenditures using the 

perpetual inventory method commonly employed in studies of R&D productivity 

(Griliches 1979).  The own R&D coefficient is interpreted as an “excess return” since 

data availability does not allow for correction of double-counting (Schankerman 1981).  

The results reported below are invariant to various depreciation and pre-sample period 

growth rates.11 

The labor variable is reported in thousands of employees.  All other financial 

variables are reported in millions of nominal dollars.  Nominal values are deflated with 

price indexes obtained from the Bureau of Labor Statistics website.  Sales figures are 

deflated with three-digit SIC-specific producer price indexes.  Capital is deflated with a 

capital expense index.  R&D stock is deflated with the occupational cost index for 

technical professionals, reflecting the fact that the majority of R&D expenditures 

represent staff salaries.12 

Firms are assumed to be located at the geographic centroid of the county location 

of their corporate headquarters.  In the base case analysis, a 50 mile radius around each 

firm is used to define all other firms as geographically near (inside the circle) or 

                                                           
11 Results reported below were insensitive to depreciation rates ranging from five to 30 percent.  Hall & 
Mairesse (1995) also find coefficient estimates robust to the choice of depreciation rate in constructing 
R&D capital, a result that has been observed in a number of previous studies. 
12 According to the “Advanced Release of Selected Tables from the Research and Development in 
Industry: 1995” report by the NSF, a majority of R&D expense is for salaried technical professionals with 
materials and supplies accounting for 10% to 20%.  Also, see Grabowski (1968).  In the absence of an 
R&D specific price deflator I use the occupational cost index for technical professional. 
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geographically distant (outside the circle).13  Location in technological space is defined 

using a firm’s four-digit SIC.14 

The COMPUSTAT data are taken from the industrial, full coverage, and research 

annual data files.  The raw data panel includes firms with corporate headquarters within 

the 50 United States and extends from 1970 to 1998.  Observations are deleted where 

sales, employment, capital investment, or R&D expenditure entries are missing or 

combined with other variables.  Further data trimming excludes observations where sales, 

employment, constructed capital stock, or constructed R&D stock are non-positive, 

leaving 4,680 observations.  An additional 105 observations are excluded which 

represent the lowest two percent of observations ordered by sales.  This censoring is 

imposed to omit young, often high-tech firms from the panel that “go public” with little 

or no sales, making them poor candidates for modeling with a production function 

framework.15 

The final, unbalanced data panel includes 4,575 observations on 515 firms 

extending from 1972 to 1995.  These data span 39 states and 29 four-digit (or eight three-

digit) SIC’s.  Summary statistics are presented in table 1. 

Spillover pools are seeded with a value of one in order to ensure they are well 

defined under the log transformation for all firm observations.  This is a problem with the 

                                                           
13 Robustness checks included at the end of the next section illustrate that the conclusions of the analysis 
are invariant to variations in the ‘geographically near’ radius and alternative measures of firm location. 
14 Currently, Jaffe (1986) provides the superlative index of relative technological position.  Due to 
aggregation in the empirical strategy defined by (2), this study would not exploit the degree of variation 
inherent in such a measure.  Measurement error associated with use of SIC’s in this context should impose 
a downward bias on spillover pool coefficient estimates.  Also, see Griliches (1992). 
15 Indeed, 87 of the 105 excluded observations come from the highest tech sector in the panel; SIC 357 - 
Computer and Office Equipment.  The main result of this censoring is to improve goodness of fit of the 
own R&D coefficient. 
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Table 1 
Final Data Panel Summary Statistics; n = 4,575 

variable Mean Std. dev. min max 
sales ($M) 619 2,100 0.299 41,400 
capital stock ($M) 294 1,040 0.010 15,100 
employment (k) 7.71 22.5 0.003 438 
R&D stock ($M) 143 607 0.001 10,100 

 

geographically near/technologically near spillover pool variable in particular, which will 

be empty for firms that are in a remote location from others in their industry.  Table 2 

reports the average spillover pool size by total R&D and number of firms in each pool. 

Table 2 
Spillover Pool Summary: 

average pool R&D stock / average number firms in pool  
 geographically near 

(within 50 miles) 
geographically distant 

(beyond 50 miles) 
technologically near (in 

same 4-digit SIC): 
 

84/0.6 
 

857/9.2 
technologically distant 

(outside own 4-digit SIC): 
 

1,500/9.0 
 

26,000/217 
 

3.  RESULTS 

Table 3 presents results from between, within, and a range of difference regression 

estimates of equation (2).  Goodness of fit is high in the between, within, and longer-

differenced estimates.  In the between case, capital and labor coefficients are significant 

at the 10 and five-percent levels, respectively.  Own R&D is also significant at the five-

percent level.  The cross-sectional regression suggests constant or slightly increasing 

returns to scale with respect to conventional inputs in the long-run.  In the within and 

higher difference regressions, all own input coefficient estimates are significant at the 
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five-percent level.16  The time-series regressions exhibit significant increasing returns to 

scale with respect to conventional inputs, which is likely to result  

Table 3 
Base case regression results:  geographically near ≤ 50 miles, technologically near = 4-d SICa 

Variable Betweenb Withinc 1st diff. d 2nd diff. d 4th diff. d 8th diff. d 
c .056* 

(.033) 
.105** 

(.021) 
-6.28 
(11.0) 

.052 
(.036) 

.076** 
(.025) 

.080** 
(.031) 

l .963** 
(.037) 

1.03** 
(.021) 

12.4 
(17.2) 

1.15** 
(.035) 

1.06** 
(.023) 

1.06** 
(.030) 

k .037** 
(.010) 

.048** 
(.010) 

-.225 
(.590) 

.043** 
(.016) 

.041** 
(.011) 

.029** 
(.015) 

∑kGnTn .032** 
(.007) 

.010** 
(.004) 

.027 
(.060) 

.003 
(.004) 

.002 
(.004) 

.013** 
(.006) 

∑kGnTz .009** 
(.002) 

.005** 
(.001) 

-.007 
(.015) 

-.000 
(.001) 

.001 
(.001) 

.005** 
(.002) 

∑kGzTn .030** 
(.003) 

.011** 
(.001) 

-.004 
(.013) 

.002** 
(.001) 

.005** 
(.001) 

.014** 
(.002) 

∑kGzTz .002** 
(.001) 

-.000 
(.001) 

-.013 
(.021) 

-.000 
(.001) 

-.001 
(.001) 

-.000 
(.002) 

adj R2 .96 .70 -.00 .49 .71 .78 
N 515 4,575 4,060 3,580 2,735 1,484 

a standard errors in parentheses. 
b intercept, state, and industry-specific fixed effect coefficients not reported. 
c intercept and year-specific fixed effect coefficient estimates not reported. 
d year-specific fixed effect coefficient estimates not reported. 
* significant at the 10 percent level. 
**significant at the 5 percent level. 

from measurement bias due to variation in capacity utilization over the business cycle.17 

Turning to the spillover pool coefficients, the geographically and technologically 

near pool (ΣkGnTn) coefficient is significant in both the between- and within-firm 

regressions and returns to significance in the eighth difference.18  It is larger than the 

                                                           
16 Equation (2) was estimated through a 10th difference.  All own-input coefficients are significant at the 
five-percent level in the 3rd through 10th difference regressions. 
17 If capital, labor, or R&D stocks are costly to adjust then a firm will choose to overutilize (underutilize) 
inputs in the early stages of an economic expansion (contraction).  Measurement error is introduced by use 
of purchased inputs as a proxy for utilized inputs. 
18 The ∑kGnTn pool coefficient is significant at the 10 percent level in the 7th difference regression and at the 
five-percent level in the 8th through 10th difference regressions.  The ∑kGnTz pool coefficient is significant at 
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geographically near/technologically distant pool (ΣkGnTz) coefficient, suggesting R&D 

spillovers are stronger among firms in a narrowly defined industry.  Comparing 

coefficients from the geographically distant spillover pools also supports this conclusion.  

Spillovers from this technologically near pool (ΣkGzTn) are significant in most cases and 

larger than those from the technologically distant pool (ΣkGzTz) in all cases.19 

Comparison of coefficients from the technologically similar spillover pools 

suggests only spillovers across industry boundaries are attenuated by distance.  In the 

between, within, and eighth difference regressions, the ΣkGnTn coefficient is similar in 

magnitude to the ΣkGzTn coefficient, suggesting spillovers between firms in the same, 

narrow SIC are not attenuated by distance.  In contrast, the ΣkGnTz coefficient is 

significant and generally larger than the ΣkGzTz coefficient, indicating that spillovers 

received from outside a firm’s own four-digit SIC are attenuated by distance.20 

A wide range of sensitivities to the base-case were explored.  Several of these 

results are included in Table 4 and discussed below.  The eighth-difference regressions is 

used as a basis for comparison since the long-difference will control for correlated fixed 

effects while avoiding spurious, high-frequency correlation that may be the source of 

significance in the ‘within’ case.  The base-case results are repeated in column (1) for 

comparison. 

                                                                                                                                                                             
the five-percent level in the 7th through 10th difference regressions.  The ∑kGzTn pool coefficient is 
significant at the five-percent level in the 2nd through 10th difference regressions. 
19 The importance of technological proximity for spillovers is suggested when equation (2) is estimated 
with the restrictions sNN = sZN and sNZ = sZZ.  In this case, the technologically near pool coefficient is 
significant and larger than the technologically distant pool coefficient. 
20 The distinction in geographic sensitivity of spillovers between technologically near and technologically 
distant firms is not identified if equation (2) is estimated with the restrictions sNN = sNZ and sZN = sZZ.  In 
this case, the geographically near pool coefficient is significant and larger than the geographically distant 
pool coefficient. 
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In order to check the robustness of the findings from the base-case, columns (2) 

through (4) report results from specifications that vary the definitions of geographic and 

Table 4 
Eighth-difference regression estimates for selected sensitivities of base casea 

 
 
Variable 

(1) 
 

Base case 

(2) 
Geo. near  
≤ 100 mi. 

(3) 
Geo. near  
≤ 200 mi. 

(4) 
Tech. near  
= 3d SIC 

(5) 
Corrected 
location 

(6) 
Excl. hi-tech 

R&D 
c .080** 

(.031) 
.077** 

(.031) 
.082** 

(.031) 
.068** 

(.026) 
.081** 

(.031) 
.115** 

(.033) 
l 1.06** 

(.030) 
1.06** 

(.030) 
1.06** 

(.030) 
1.01** 

(.024) 
1.06** 

(.030) 
1.05** 

(.031) 
k .029** 

(.015) 
.029** 

(.015) 
.030** 

(.015) 
.040** 

(.012) 
.029** 

(.015) 
.063** 

(.015) 
∑kGnTn .013** 

(.006) 
.014** 

(.005) 
.009** 

(.004) 
.007** 

(.002) 
.015** 

(.006) 
.019** 

(.009) 
∑kGnTz .005** 

(.002) 
.002 

(.002) 
.000 

(.002) 
.000 

(.002) 
.004* 

(.002) 
.012** 

(.004) 
∑kGzTn .014** 

(.002) 
.015** 

(.002) 
.015** 

(.002) 
.008** 

(.002) 
.014** 

(.002) 
.010** 

(.004) 
∑kGzTz -.000 

(.002) 
.000 

(.002) 
.000 

(.002) 
-.001 
(.002) 

.000 
(.002) 

.006* 
(.003) 

adj R2 .78 .78 .78 .85 .78 .76 
N 1,484 1,484 1,484 1,484 1,484 1,484 

a standard errors in parentheses; year-specific fixed effect coefficient estimates not reported. 
* significant at the 10 percent level. 
**significant at the 5 percent level. 

technological nearness.  Comparing column’s (2) and (3) to the base case, the ΣkGnTn pool 

coefficient is biased down slightly as the definition of nearby firms is expanded to 

include those within 200 miles.  Even at 200 miles, however, this coefficient is within 

one standard deviation of the base case point estimate.  And the ΣkGzTn coefficient is 

unchanged as this pool is limited to firms beyond 200 miles.  The ΣkGnTz coefficient, in 

contrast, becomes insignificant as the ‘geographically near’ boundary is expanded 

beyond 50 miles. 

Comparing column (4) to (1), the technologically near pool coefficients fall as 
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these pools are expanded to contain a firms entire three-digit SIC.  In addition, the ∑kGnTz 

pool coefficient is insignificant as this pool is limited to only the most technologically 

distant firms in the panel. 

Use of corporate headquarters to define firm location is one potential source of 

measurement error in the analysis.  Presumably, a firm’s R&D facility is the most likely 

location of spillover generation and reception.  While R&D activity is often conducted at 

a headquarters location, this is not necessarily the case.  The Directory of American 

Research and Technology was consulted to establish the reasonableness of the claim that 

corporate headquarters may be a useful proxy for the location of spillover generation and 

reception.  This volume lists the location of a firm’s corporate headquarters and R&D 

facilities.  Approximately 60 percent of the firms included in this analysis have entries in 

at least one of the following volumes:  1975, 1977, 1983, 1988, 1993, 1998.  Of this 

sample, 76 percent of firms conduct their R&D in the same city as their corporate 

headquarters.  And a total of 87 percent conduct their R&D in the same state.  In order to 

check the sensitivity of the base-case results to these variances, column (5) reports the 

results of the regression where the R&D facility location was used in place of the 

corporate headquarters location where these were found to differ.  The results are 

unchanged from the base-case analysis.21 

Finally, use of SIC 35 for this analysis may limit our ability to generalize these 

                                                           
21 Of the 60 percent of firms observed in the directory, 24 percent conduct at least some of their R&D 
outside their headquarters city;  13 percent conduct R&D outside their headquarters state.  Assuming these 
fractions apply to firms unobserved in the directory, an erroneous city is assumed for 50 firms, or less than 
10 percent of the total panel;  an erroneous state is assumed for 26 firms or five-percent of the total panel.  
These sample statistics are likely to represent an upper bound, however, if we assume that any 
underreporting in the directory is biased towards smaller firms that are more likely to conduct R&D at their 
headquarters location. 
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results if the relatively high-tech SIC 357, Computers and Office Equipment, are 

generating all of the spillovers.  The results reported in column (6), which exclude SIC 

357 R&D from spillover pools, suggest R&D spillovers are a general artifact of the 

panel.  The most significant result of this sensitivity appears to be an upward bias in the 

own R&D coefficient, which is two standard deviations above the base case estimate.  In 

addition, the ΣkGnTz coefficient is biased upward and nearly two standard deviations 

above the base case estimate, the ΣkGzTz coefficient is significant at the 10 percent level, 

and all the pool coefficients are estimated with lower precision. 

4.  CONCLUSION 

This analysis improves our understanding of the importance of geographic and 

technological distance for identifying inter-firm R&D spillovers.  Parameter estimates 

obtained in a production function framework indicate that spillovers are significant and 

important from geographically and technologically proximate R&D stocks. Evidence is 

presented which suggest an important measure of the apparent geographic localization of 

R&D spillovers may be a result of other factors that lead to industrial agglomeration. 

The largest R&D spillovers are found to flow between firms in the same industry.  

However, spillovers within narrowly defined technological groups do not appear to be 

attenuated by distance.  This is not to say that R&D spillovers necessarily play no role in 

agglomeration.  While spillovers from outside a firm’s narrowly defined industry are 

smaller, these spillovers do appear to be attenuated by distance.  Consequently, R&D 

spillovers may play a role in the formation of industrially diverse agglomerations. 
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