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Abstract

This article suggests two methods for deriving a statistical verdict from a null finding,
allowing economists to more confidently conclude when “not significant” can in fact
be interpreted as “no substantive effect.” The proposed methodology can be extended
to a variety of empirical contexts where size and power matter. The example used to
demonstrate the method is the Economic Research Service’s 2004 Report to Congress
that was charged with statistically identifying any unintended negative employment
consequences of the Conservation Reserve Program (the Program). The report failed
to identify a statistically significant negative long-term effect of the Program on em-
ployment growth, but the authors correctly cautioned that the verdict of “no negative
employment effect” was only valid if the econometric test was statistically powerful.
We replicate the 2004 analysis and use new methods of statistical inference to resolve
the two critical deficiencies that preclude estimation of statistical power by economists:
1) positing a compelling effect size, and 2) providing an estimate of the variability of an
unobserved alternative distribution using simulation methods. We conclude that the
test used in the report had high power for detecting employment effects of -1 percent
or lower resulting from the Program, equivalent to job losses reducing a conservative
estimate of environmental benefits by a third.
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1 Introduction

Researchers often report results that are not statistically significant, also known as null

findings. But an insignificant result does not necessarily mean an unimportant one. The

objective of this article is to suggest a method for deriving probabilities for null findings,

allowing economists to more confidently conclude when “not significant” can in fact be

interpreted as “no substantive effect.” The example used to demonstrate the method is the

Economic Research Service’s (ERS) 2004 Report to Congress on the economic implications

of the Conservation Reserve Program (CRP).

Continued employment and population decline in farm-dependent counties through the

1990s raised concern that agricultural programs encouraging the removal of environmentally

vulnerable land from production might have cost jobs. The ERS study did identify worse

employment growth performance in farm-dependent counties with high-CRP enrollments

compared to low-CRP peers. However, the analysis was unable to attribute lost employment

to CRP enrollments. The combination of multiple model specifications that failed to find

statistically significant negative employment impacts of CRP supported a cautious conclusion

of “no evidence of negative employment impacts from CRP.” However, the report correctly

noted that the “absence of evidence is not evidence of absence.” The statistical power of the

test was unknown. The authors correctly cautioned that there was no unequivocal statistical

evidence that “not significant” could be interpreted as “no negative effect.”

Estimating the statistical power that was unknown in the 2004 report requires address-

ing two critical deficiencies characterizing the majority of econometric studies using null

hypothesis statistical testing (NHST): 1) positing a priori a compelling effect size (i.e., the

minimum effect considered economically significant), and 2) providing an approximation of

the shape, location, and scale of an unobserved alternative distribution. The first deficiency

is filled through back-of-the-envelope calculations equating program costs to program ben-

efits. These ballpark estimates provide a conceivable range of adverse employment effects

following enrollment of cropland into the CRP. The second deficiency is conceptually and
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computationally more challenging. We develop candidate alternative distributions using two

simulation approaches: 1) a bootstrap resampling procedure and 2) a Bayesian approach

forcing an effect size with a strong prior.

Power estimates from the 2004 Report are challenging from the standpoint of both con-

ventional practice and the explicit charge from Congress to search for “any effect”. Our

findings suggest that the tests used to search for “any effect” were low-power. A strict

reading of the Congressional charge and of the NHST protocol would require suspending

judgment on the likely effect of CRP on employment growth. If the de facto charge was to

search for an economically significant effect of CRP on employment – i.e., an effect that an

informed person would not regard as miniscule – then our replication reinforces the original

findings. Since the test to detect a negative effect of -1 percent was powerful, the null finding

can be interpreted as “no economically significant effect.” Lower than this posited effect size

would require suspension of judgment. The broader implications for econometric practice

are discussed in the conclusion.

2 The Challenge of Relying on NHST to Inform Policy

The two dominant ways of using statistical analysis are either as an instrument of scientific

exploration or as an instrument to aid decision-making. The work of Ronald Fisher provides

the foundation for the former. The protocol developed by Jerzy Neyman and Egon Pearson

provides the foundation for the latter (Christensen, 2005).

The key construct underlying Fisherian NHST is that scientific exploration begins from

a position of ignorance. Compelling alternative hypotheses are unknown. The benefits this

approach provides are immediate: 1) only a single distribution is required for testing if

an estimate is statistically different from the presumed null; 2) the parameters of the null

distribution are derived solely from sample data with no requirement for prior or auxiliary

information; and 3) in the case of a statistically significant result, the protocol provides a
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measure of confidence in that verdict. The major cost of this method is that no statistical in-

ference is possible for nonsignificant results. The proof by contradiction has failed. The only

valid verdict is to suspend judgment. In its purest sense, this cost in scientific exploration is

zero because nonsignificant findings carry no normative implications.

The dominant frequentist alternative to Fisherian NHST is the Neyman-Pearson protocol

that was developed explicitly as a statistical tool to aid decision-making (Tweeten, 1983).

Within this framework, the researcher is required to collect information not available in

the sample. The researcher must arrive at a relevant effect size that defines the mean of

the alternative distribution. Relevance might be derived in a number of ways including

predictions from theory, results from computational models, or a breakeven point for a

treatment or policy. The research must also posit what the alternative distribution looks

like in terms of its location, dispersion, or shape. These features could be informed by

a literature review. With this information, the researcher can conduct an ex ante power

analysis to determine the sample size needed to produce a powerful test. The upfront costs

of this approach produce their benefits at the end of the analysis when the findings are used

to inform a decision. The verdict from a statistically significant result parallels that in NHST,

but the verdict from a nonsignificant result is also informative: ‘‘with X level of confidence,

the absolute magnitude of the treatment effect fails to meet the minimum <posited effect

size> required for economic significance.”

The Neyman-Pearson protocol is fairly common in applied statistical disciplines where

equivocal findings could result in significant monetary costs, such as biomedical research.

The most persuasive explanation for why econometrics has placed more emphasis on Fishe-

rian NHST versus Neyman-Pearson is the much greater difficulty of positing an alternative

distribution (Wojan et al., 2014). Lacking conjectures for an unobserved alternative distri-

bution, it made little sense to incorporate effect size into an econometric analysis because

an explicit estimate of statistical power would be impossible. Instead, econometrics grafted

the concepts of statistical power and Type II error (falsely failing to reject the null hypoth-
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esis) onto the Fisherian NHST protocol as tertiary issues of concern that would rarely be

considered.

Our conjecture is that simple (often implicit) rules of thumb and heuristics are what

allow economists to apply NHST as a statistical aid to decision-making without discarding

every nonsignificant finding as uninformative, as a strict Fisherian would require. The sim-

plest determinant of statistical power is sample size and so the problem of ensuring tests

of adequate power is often reduced to ensuring tests of adequate sample size. There are no

hard and fast rules, but an appreciation of “adequate sample size” is something economists

develop through experience. If an analysis of a given sample size produces statistically

significant results, then tests for other specifications and dependent variables in the anal-

ysis may be assumed to be adequately powerful to conclude that a program had no effect

for some outcomes, without an actual estimation of the statistical power. Unfortunately,

these approaches that abstract from effect size and treatment variability – the more complex

determinants of statistical power – also abstract from the most powerful determinants of

statistical power. For example, if the effect size that matters is “large”, a relatively small

sample may provide a very powerful test. Conversely, if the variation around the treatment

effect is large, then a “reasonably large dataset” may only provide weak tests.

While academic economists express confidence that the scholarly community can effec-

tively regulate their NHST-hybrid to guard against erroneous statistical inference (Hoover

and Siegler, 2008), the American Statistical Association recently expressed renewed concern

over adequacy of statistical significance and p-values for informing decisions (Wasserstein,

2016). The three principles most germane to economists doing policy relevant research are:

...
3. Scientific conclusions and business or policy decisions should not be based only on
whether a p-value passes a specific threshold.
4. Proper inference requires full reporting and transparency.
5. A p-value, or statistical significance, does not measure the size of an effect or the
importance of a result.

Professional opinion regarding the adequacy of statistical power would appear to fall short
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of the requirement for “full reporting and transparency.”

Because the statistical power of an empirical test is objective information, the most

informative studies provide power estimates whenever a nonsignificant finding is relevant to

a public policy question (see Nickerson et al. 2017, who suggest providing statistical power

assessments as a best practice for Federal program evaluation activities). However, ex ante

statistical power assessments may often be infeasible due to the novelty inherent in evaluating

new programs or initiatives (Wojan et al., 2014). For transparency, the 2004 CRP Report

included the caveat that the statistical power of the econometric test was unknown (Sullivan

et al., 2004). The flexibility for conducting analyses and making inferences even when an

exemplary dataset and prior studies are not available is made explicit in Practice 4 of the

Principles and Practices of a Federal Statistical Agency (National Academies of Science,

Engineering, and Medicine, 2017, p. 81) that addresses openness “about the strengths and

limitations of its data.” The question is whether the assumed infeasibility of statistical power

assessments is truly binding. To answer this question, we develop approaches to generate ex

post statistical power estimates to supplement the interpretation of nonsignificant findings.

The first approach uses a bootstrap resampling-with-replacement procedure. The second

approach is Bayesian, estimating power based on posterior marginal distributions of posited

effect sizes.

3 Congressionally Mandated Study of the Conserva-

tion Reserve Program’s Economic Implications

The Conservation Reserve Program was authorized in 1985 for the purpose of providing

public benefits by taking environmentally vulnerable agricultural land out of production. The

CRP had an acreage cap and farmers submitted bids, ensuring that the benefits provided

were secured at a reasonable cost to the government. If proceeds from these contracts

went strictly to farmers, the program may be expected to have limited negative effect on
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the economic activity in farm dependent counties. However, since the proceeds went to

landowners, who may or may not have resided in the county, there was the possibility the local

economic losses from the decline in agricultural production would not be fully compensated

by CRP payments. And since many counties with relatively more CRP contracts appeared

to be losing jobs and population during a period of national prosperity, the concern was

that taking agricultural land out of production might be exacerbating the problem. Thus,

Congress requested a study from ERS to examine the economic implications of the program.

The 2004 ERS study provides a comprehensive examination of the effect of CRP on farm

and non-farm rural economies including discussions of CRP rental payments and absentee

landowners, the environmental and scenic impacts of CRP, and the anticipated upstream

effects of CRP on businesses providing inputs to farming (Sullivan et al., 2004). The com-

prehensiveness of the report reinforces the story that the statistical analysis of employment

trends supported but could not definitively confirm: i.e., that implementation of the CRP had

small negative short term impacts on farm-dependent counties with high CRP enrollments

but these impacts were not evident in the longer term due perhaps to observed increases

in recreational spending. The NHST conundrum of not knowing whether the nonsignificant

estimate of high-CRP enrollment on long-term employment growth could be interpreted as

“no effect” or should be interpreted as a weak test is what the present study helps to resolve.

Testing for the effects of high-CRP enrollment on employment growth presented the chal-

lenge of adequately controlling for endogenous selection. The assumption from the outset

was that many of the conditions that would support high CRP enrollments were also con-

ditions that would be associated with long-term employment decline. The research design

that was eventually implemented used a quasi-experimental matched pair protocol using

the Mahalanobis-metric procedure, matching individual high-CRP counties with similarly

situated low-CRP counties. Conceptually, if paired counties were nearly identical in those

attributes explaining employment growth and program participation, then any observed dif-

ference in employment growth would be attributable to differences in CRP enrollments.
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Empirically, it turned out that significant differences between the treatment (high CRP)

and control (low CRP) counties persisted even after optimal matching. A difference-in-

difference (DID) specification was required to control for differences in matching variables

that persisted to isolate the effect of high versus low CRP enrollments on job growth.1.

One-hundred and ninety high-CRP counties were matched 1-to-1 with low-CRP coun-

ties. Table 1 provides information on the mean value of industrial, labor market, and farm

structure variables for the two groups. The high-CRP counties tended to be more dependent

on agriculture and government payments, had lower shares of employment in manufacturing,

and were more likely to be located in the Great Plains. Had the matching algorithm found

closer matches on these variables, then simply comparing the average employment growth

across groups would have been informative of the impact of high-CRP enrollments. However,

given differences in structural characteristics, it is reasonable to assume that many factors

other than CRP enrollment contributed to differences in job gains. Table 2 demonstrates an

employment change difference of 5.8 percent between high-CRP and matched counties.

The descriptive statistics from the matching exercise suggest the possibility that high-

CRP enrollment may be strongly associated with poor employment growth performance.

The critical question is whether any of this poorer performance is attributable to high-CRP

enrollments.

The ERS researchers specified the DID regression equation to isolate the effect of high-

CRP enrollment on employment growth, controlling for potentially confounding differences

in other county attributes. Multiple specifications were estimated to guard against erro-

neous results due to misspecification error. Short-term regressions did find negative impacts

of high-CRP on employment growth that were statistically significant in 7 of 20 alternative

specifications (magnitudes of these estimates were not provided). The alternative specifica-

tions only suggested that the relatively small sample size of 190 matched pairs was adequately

1Two reviewers noted that recent developments in matching techniques would reduce the risk of a mis-
specified post-matching regression model using balanced matching procedures (Diamond and Sekhon, 2013)
or a matching regression with adjustment (Abadie and Imbens, 2011). These approaches could also reduce
variability that could be introduced during the matching procedure (Ho et al., 2007).
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powerful. However, the main purpose of the alternative specifications was to increase con-

fidence of researchers that the failure to produce statistically significant negative results in

the long-run regressions were in fact informative. The 20 specifications estimated for the

long-term dependent variable did produce one negative coefficient estimate that was not

statistically significant, and 3 positive coefficient estimates significant at the 10% level.

The discussion in the report summarizing the implications of the regression exercise are a

textbook demonstration of “provid[ing] objective information” (Principle 1) that recognized

“limitations of the data” (Practice 4) outlined in the Principles and Practices of a Federal

Statistical Agency:

Between the matched-pair and study data sets, the different measures of CRP usage,
and other variations as discussed in Appendix A, we have 20 different estimates of the
relationship between CRP use and population and employment trends. This approach
allows us to assess the consistency of the matched-pair estimations. Given that esti-
mated coefficients can change from one model to the next, consistent estimates provide
some confidence that the absence of statistical significance can be interpreted as “CRP
has no effect,” even though we do not know the probability of a Type II or false neg-
ative error. Since the absence of evidence is not evidence of absence, this approach
helps to corroborate the findings from the matched-pair analysis (page 31).

In this discussion, the heuristic of robustness is used to reinforce the inference from a null

finding. While robustness tests often provide valid checks of empirical findings, a challenge is

that if a statistical test is in fact weak, numerous re-specifications will only provide additional

evidence of weak power.

4 Deriving a Statistical Answer

As noted in the ERS report, deriving a statistical answer requires “know[ing] the proba-

bility of a Type II error or false negative error.” Clearly, if the test had a high probability

of detecting a negative effect of high-CRP enrollment on employment growth, then a non-

significant finding could be interpreted as “CRP has no effect.” Knowing the probability of

a Type II error requires estimating the statistical power of the test, which requires in turn
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positing an effect size that matters and producing a credible, though unobserved, alternative

distribution.

The economics discipline has been slow to address the issue of positing relevant effects

sizes. McCloskey and Ziliak (1996, p. 105) examined the issue and found that fewer than

30 percent of articles published in the American Economic Review in the 1980s discussed

“the scientific conversation within which a coefficient would be considered large or small.”

So consideration of the magnitude of estimates was relatively rare even after estimates were

available. Consideration of effect sizes prior to estimation was not examined explicitly by

McCloskey and Ziliak, but the 4.4 percent of articles that had “consider[ed] the power of the

test” may have done this. By the 1990s, eight percent of articles published in AER considered

the power of the test suggesting a very modest improvement (Ziliak and McCloskey, 2004).

Congress charged ERS with identifying any negative impacts (Sullivan et al., 2004).

Positing an effect size for the purpose of analysis could be interpreted as inconsistent with

Congressional intent because the effect size that mattered was explicit: any effect. Theo-

retically, the power of the test will approach the size of the test as the effect size goes to

zero, meaning that tests of any effect’ will have low power. However, an objective, impartial

resolution to the problem could be to provide a range of possible effect sizes, given a credible

and transparent method of determining that range. If the magnitude of those effect sizes can

be illuminated with a discussion of their economic relevance, then policymakers will have

a much richer set of information guiding their normative decisions. Providing a range of

effect sizes that might matter does not bias the analysis. The final decision regarding what

matters is retained by the policymaker.

Describing a worst case scenario for unintended adverse effects of the CRP provides

a compelling case of what would constitute an upper-bound effect size benchmarked to

economic and environmental data. Equating job losses to the environmental benefits qualifies

as such a scenario. Arriving at an approximation of this figure is all that is required. The

number is not intended to inform policy but merely to provide a reference point.
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Simplifying assumptions that allow a back-of-the-envelope derivation include: 1) program

benefits are equivalent to direct program costs; 2) these program benefits can be allocated

to the study as the share of program acres in treatment (high-CRP) counties; 3) there are

“pure controls”; i.e., no CRP acres in low-CRP counties; and 4) one job in the year 2000

in treatment counties can be valued at $23,897. This value is the average earnings per

nonmetropolitan job derived from the Bureau of Economic Analysis. Arriving at a ballpark

employment loss percentage is calculated as the job equivalent cost (benefit) of the program

(= “a”) times the treatment county share of the program (b = program acres in treatment

counties divided by total number of program acres), divided by total employment in the

treatment counties (= “c”):

Job Equivalent Cost of Program× Treatment Counties Share of Program

× [1/Treatment County Jobs] =

$23.7 billion

$23, 897
(a)× 508, 000 acres

33, 981, 000 acres
(b)× 1

537, 398 jobs
(c) = 2.76% (1)

These grossly simplified (though we believe reasonable) assumptions provide useful in-

formation for characterizing a reference point at which the program exerts adverse effects on

employment in CRP counties. Remembering that employment growth in treatment counties

lagged control counties by 5.8 percent, attributing half this loss to high-CRP enrollments

would amount to a full negation of expected environmental benefits. If this worst case sce-

nario was in fact supported by the analysis, then Congress could have a basis on economic

efficiency grounds for modifying the program. However, adverse effects below this reference

point could also provide an economic basis for modifying the CRP. Effect sizes roughly one

half, third, or a fifth of the worst case scenario would correspond to an effect size of negative

1.5 percent, 1 percent and 0.5 percent, respectively. To assess the power of detecting “any

effect”, an effect size of negative 0.1 percent is also included in the ex post power estimates.

Arriving at a credible estimate of an unobserved alternative distribution is technically
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more challenging than positing an effect size. And, unlike the effect size exercise, producing

a range of distributions would misinterpret the function of the alternative distribution in a

statistical power analysis; i.e., to provide an accurate representation of the phenomena of

interest in the population. Traditionally, this has been done through extensive literature

searches. However, the CRP study was the first of its kind and the conventional approach

was impossible.

5 Ex Post Power Simulation with Monte Carlo Resam-

pling

We replicate first the long-run local employment growth model used to evaluate CRP by

Sullivan et al. (2004). The authors reported the CRP estimates for several models, but only

complete results were reported for one version. We selected that specification to benchmark

our ex post power analysis. In the Sullivan et al. study, employment growth between 1985

and 2000 was estimated using ordinary least squares (OLS) on the differenced values between

matched pairs of high-CRP (HCRP) and low-CRP (LCRP) counties with the linear model:

yi =

[
ln

(
empHCRP

i,2000

empHCRP
i,1985

)
− ln

(
empLCRP

i,2000

empLCRP
i,1985

)]
= Xiβ + εi, (2)

where i indexes a matched pair; Xi = (XHCRP
i − XLCRP

i ) is an n by k matrix of matched

pair differences in information on CRP payments and conditioning measures, including local

socioeconomic and agricultural characteristics; and β is a k by 1 vector of coefficients (tables

1 and 2). The variable ε is independent and identically distributed random component with

mean zero and a constant variance.

Equation 2 was estimated with the 190 matched pairs from the original study. The

replicated OLS estimates are in Table 3. The results are nearly identical to those reported

in Table A.3 of Sullivan et al. (2004). The variable of concern in this regression is the ratio
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of county level payments from CRP over total income (XCRP ). We find a one standard

deviation increase in the CRP to total income ratio would be associated with a positive and

statistically significant 0.24 percent increase in employment growth.

The first step of the Monte Carlo resampling procedure entails selecting the value of

β̄CRP ; i.e., values indicating effect sizes under the alternative hypothesis. In this example, a

range of effect sizes were evaluated, given the absence of a specific effect of interest in the

charge from Congress. The alternative hypotheses of employment growth response to CRP

were set to β̄CRP = −0.001,−0.005,−0.010,−0.015, and − 0.027. These values correspond

with the smallest effect size of -0.1 percent in employment growth from a unit change in CRP

to the largest effect size of -2.7 percent in employment growth. Determining effect sizes can

be subjective. However, in the current analysis we chose to work from our estimate of the

job loss (-2.7 percent) that would offset CRP benefits and smaller effect sizes approaching

zero (Equation 1). We specifically chose negative numbers to speak more directly to the

original question of whether or not CRP payments negatively affected rural employment

growth, ceteris paribus.

The second step entails choosing sample sizes over which the probability of a Type II

error is calculated. The original study included 190 matched pairs. We include this sample

size in the power analysis as a reference point. We also evaluate sample sizes 100 to 350 in

steps of 50 observations. Varying the sample size and effect size results in a power surface

indicating how the Type II error rate of the test, given sample size n and a posited effect

size β̄CRP .

The third step of the ex post power analysis requires reconstructing the Data Generating

Process (DGP) of the model. This step requires a simulation procedure similar to a bootstrap

percentile t-test (Cameron and Trivedi, 2005). We apply a residual bootstrap procedure to

simulate the DGP, which entails the following steps:

a) For sample size n and CRP effect size β̄CRP , resample with replacement from the orig-

inal design matrix and OLS residual vector (Xn, ε̂n) to generate a bootstrap replicate
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data set (X∗n, ε̂
∗
n).

b) Calculate a new yn as y∗n = X∗nβ̂ + ε̂∗n, replacing β̂CRP with β̄CRP .

c) Regress X∗n on y∗n with OLS.

d) Calculate the t-statistic (t∗) for β̂∗CRP under the null, H0 : βCRP = 0.

e) For a 1-tailed test and a Type I error rate of α = 0.05, if t∗ < t0.05,160 (k = 30, the

number of covariates), then tally a rejection (r) of the null with a “1”.

f) Return to step (a)

g) Repeat M times.

The power of the test is determined as r divided by the number of simulations in a

sample size/effect size pair. We set M = 10, 000 iterations for each combination, including

the sample size of 190, which corresponds to original number of matched pair observations.

The critical bound of the test statistic is t0.05,160 = −1.654, which corresponds with a cut-off

of βCRP (Crit) = −1.654× 0.0034 = −0.0057.

6 Ex Post Power Simulation from Posterior Marginal

Distributions

An alternative but comparable approach for determining ex post power entails character-

izing the entire posterior distribution of an estimated effect, along with the highest posterior

density (HPD) bounds.2 This Bayesian approach determines the posterior power of the

1-tailed test considered here by integrating underneath the HPD region left of the critical

bound associated with the null hypothesis; i.e., −0.0057. The drawback of this approach is

that the effect of sample size on power cannot be determined.

2We thank an anonymous reviewer suggesting this approach.
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The normal regression model is

yi ∼ N(Xiβ, σ
2) (3)

π(βk) ∼ N(0, σ2
k)(k does not include βCRP ) (4)

π(βCRP ) ∼ N(β̄CRP , σ
2
CRP ) (5)

π(σ2) ∼ IG(a, b) (6)

where the π’s are prior distributions assigned to the model parameters, and IG is the inverse

gamma distribution with shape and scale parameters (a, b). We use diffuse priors for the

variance of the βk’s and σ2, setting σ2
k to 10,000 and (a, b) to 0.01 (LeSage and Pace, 2009).

Strong priors are used on the CRP effect, anchoring the distribution of βCRP to the posited

effect size and using the square of the OLS standard error as prior for the variance (table 3,

σ2
CRP = 0.00342).

For each effect size evaluated, 1,000 Markov Chain Monte Carlo (MCMC) samples are

generated with a thinning interval of 10 and a burn-in period of 5,000. In other words, the

first 5,000 draws were discarded, after which every 10th draw was retained. This method

helps reduce autocorrelation in the chain but decreases the time to convergence. Chain

convergence was assessed with the effective sample size associated with each parameter and

the minimum, maximum, and average efficiency across parameters.

Posterior power is estimated with the result of a closed-interval test based on the marginal

posterior distribution of βCRP . The closed-interval test is

H0 : βCRP ∈ (−∞,−0.0057] (7)

The probability the null hypothesis is true is enumerated as the count of the simulated βCRP

posterior estimates meeting this condition. The resulting probability P (H0) is therefore the
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posterior power of the test, or 1−Pr[Type II Error ].

7 Results

Table 4 summarizes the power of the test using the Monte Carlo resampling method

for each sample and effect size combination. The grey shading highlights the results for

the original study’s sample size (N = 190). Conventionally, a Type II error rate of 0.20

corresponds with a powerful test (= 0.80) (Cohen, 1988; Bayarri et al., 2016).3 For the effect

size of -1.5 percent, the power was 0.99. With an effect size of -1 percent, the power of the

test was 0.88. The power of the test is diminished at lower effect sizes (-0.001 and -0.005),

requiring suspension of judgment at those levels. Power increases as sample size and effect

size increase. The power of the test converges to 1.0 after 150 observations at the effect size

of -0.027. This result indicates that if the decline in employment growth from CRP was

enough to offset the program’s environmental benefits, we would have nearly 100 percent

chance of detecting a negative effect of CRP on employment growth.

A visual illustration of this finding is in Figure 1 (top panel), which shows the empirical

distributions of 10,000 draws using 190 observations and CRP effect sizes of -0.005 and -0.015.

The solid vertical line corresponds with the critical value of the 1-tailed t-test corresponding

with rejection of the null hypothesis (-0.0057). The overlap of the tails of the alternative

distribution generated with an effect size of -0.005 and the null distribution are indicative of

a relatively low test power (= 0.42). This leads to a rejection ratio of 0.42/0.05 = 8.4 (see

Bayarri et al. 2016, for a discussion on size, power, and rejection ratios). In other words,

in repeated samples, the odds are 8.4:1 that the observed parameter was generated from

the alternative, enough perhaps to inspire a yawn of confidence. The safe course of action

would be to suspend judgement. As the effect size increases (more negative in this case), the

3The intuition is provided by Bayarri et al. (2016), among others. At a Type I error rate of α = 0.05
and a power of 0.80, a rejection would be 16 times more likely to occur under the alternative than under the
null in repeated samples. However, there is no agreement what level of power constitutes a powerful test;
0.80 is conventional.
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distribution of the simulated coefficient shifts further leftward, corresponding with a higher

power test. At the effect size of -0.015 percent, the power of the test is 0.99, as indicated

by the decrease in the overlap of the null and alterative distribution tails. In this case, an

estimate falling to the left of the critical value of -0.0057 percent is 0.99/0.05 = 19.8 times

more likely to arise under the alternative distribution than the null at this posited effect size.

The power to discern an effect increases, along with confidence in conclusion drawn from the

test.

The posterior distributions of the effect size diverged from the priors (table 5). In

Bayesian analyses, this occurs when there is insufficient information in the sample data.

For example, according to the Bernstein-von Mises theorem, the posteriors and prior distri-

butions are independent in large samples. In practice, the dependence between the choice

of priors and model results is assessed by sensitivity analysis. We therefore evaluated the

normal model of equations 3 to 6 over a range of priors from-0.048 to 0 in increments of 0.01

(all normal distributions with a variance of 0.00342). Although the posterior estimates of the

effect sizes differed from their respective priors, the correspondence is strong and positive

(Pearson’s correlation = 0.99).4 In the foregoing example, a 1-percent increase in the level

of the effect size prior corresponds with a 0.62 percent increase in the posterior estimate of

the effect size.

The posterior distributions of the effects sizes matching those generated by the resampling

procedure were selected for comparison at the N = 190 sample of the original ERS study

(table 5, figure 1). The power curves of both approaches are comparable. At the effect

sizes of -0.001 and -0.005, the test’s power to detect an effect is lower as determined by the

Bayesian approach. The rejection ratio exceeds 16:1 for both approaches at and above an

effect size of -0.01. Taken together, these results indicate that the original model had, under

conventional levels, good (≥ 80 percent) power for detecting negative employment effects

from CRP of 1-percent or lower. At effect sizes lower than -1 percent, the prudent decision

4For all models, the effective sample size averaged 0.97 and the acceptance rate was 1. We conclude the
MCMC chains converged.
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maker might choose to suspend judgment.

The draw-back of the Bayesian approach suggested here is that ex post power cannot

be compared over different sample sizes. In addition, depending on how sensitive posterior

distributions are to priors, additional computations over a wide range of priors may be

required to examine the ex post power of a test at a specified effect size. An advantage

of the Bayesian approach is that it is relatively straightforward to extend to discrete or

censored variables. Routines in SAS (SAS Institute, 2016), Stata (StataCorp, 2017) and R

(McElearth, 2016) are well-documented with code, examples, and technical support.5 The

Monte Carlo resampling approach would require additional assumptions with respect to the

DGP’s of error terms.

8 Conclusion

The 2004 Report to Congress on the economic impacts of the Conservation Reserve

Program provides a textbook case of how economists using conventional econometric testing

protocol can inform policymakers regarding potential unintended adverse consequences of

a policy. The challenge presented by the ERS study was that the econometric analysis of

long-term employment effects of CRP culminated in a null finding. The Report correctly

cautioned that the econometric verdict of “not statistically significant” could not be directly

interpreted as “no adverse effect” because the statistical power of the test was unknown. The

report did provide corroboratory evidence that rural counties with high CRP enrollments

might be adapting to reduced agricultural production via increases in recreational spending.

The preponderance of evidence supported the conclusion of “no adverse effect” even if a

concise statistical verdict was unavailable.

Replication of the 2004 analysis confirms the 190 matched pair sample exhibited good

power (0.88 to 0.92) for detecting a moderate adverse effect of CRP enrollment on employ-

ment growth of -1 percent. Applying new methods of statistical inference to the data and

5Data and code are available as supplementary materials online.
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model used in the 2004 Report allows a more definitive conclusion: that the absence of

statistical significance can reasonably be interpreted as “CRP has no substantive effect,”

since the probability of a Type II, or false negative error, is 0.12 percent if a reduction of -1

percent in employment growth is dispositive.

The potential for a crisp statistical verdict for null findings hints at a potential increase

in the productivity of economists whose econometric work is used to inform decision-making.

Because the continued move to evidence-based policy making will emphasize the normative

importance of nonsignificant findings (Nussle and Orszag, 2014), economists armed only

with NHST will be limited in their ability to address the “nonsignificant finding lacking

error probability” conundrum. The costs associated with this could include the collection

of extra-statistical information to reinforce equivocal statistical inference and the possibility

of increased data collection costs if increased sample size is regarded as reliable insurance

against uninformative studies. Proposed impact studies with seemingly limited samples may

be rejected out of hand even if powerful statistical tests might be supported by the data. The

alternative approaches presented as a proof of concept here is consistent with Practice 9 of

the Principles and Practices of a Federal Statistical Agency (National Academies of Science,

Engineering, and Medicine, 2017, p. 101) to “keep abreast of and use modern statistical

theory and sound statistical and computational practices in all technical work.” Elevation

from proof of concept to sound statistical practice will require critical assessment and fur-

ther development of contemporary versions of the Neyman-Pearson protocol and/or use of

Bayesian techniques by the community of economists in both academia and government.

In many circumstances, economists do not have the opportunity to conduct ex ante power

analysis before research starts. The approaches we suggest can be used to determine ex post

power for univariate analyses or multivariate regressions if the data generating process can

be replicated and if the effect size of economic significance or policy relevance is stated.

Given a range of posited effect sizes, our approach supplements an array of tools to inform

decision making in the event of a null finding.
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Table 1: Mean values of Industrial, Labor Market, and Farm Structure Variables

High-CRP Matched
Variable Description Unit Counties Counties
Local economic characteristics:

Agricultural employment, 1980 Percent 31.7 24.7**
Manufacturing employment, 1980 Percent 5.7 8.4**

Mining employment, 1980 Percent 2.2 2.3
Business services employment, 1980 Percent 3.9 4.2*

Recreation employment, 1980 Percent 4.1 4.5*
Special development dummy variables1:

Prison county 0/1 1 0
Casino county 0/1 0 1.5

Meatpacking plant county 0/1 0.5 1
Labor market and location characteristics:

Civilian employment, age 15-64, 1980 Percent 64.9 65.6
Working outside the county, 1980 Percent 10.9 12.9*

Median household income, 1979 $ 12,620 12,936
Adjacent to a metropolitan area, 1983 0/1 15.9 22.6

Great Plains county 0/1 80 59.5**
Agricultural characteristics:

Cropland/all land, 1982 Percent 46.7 45.1
Irrigated farmland, 1982 Percent 4.3 8.5**

Grain/total sales value, 1982 Percent 38.4 31.5**
Wheat/total sales, 1982 Percent 25.2 12.2**

Livestock/total sales, 1982 Percent 51.5 61.6**
Govt. payments/total income, 1981-83 Percent 6 2.6**

CRP enrollment/cropland, 1991-93 Percent 21.3 5.1**
CRP payments/income, 1991-93 Percent 6.7 0.8**

Farm sales/household income, 1980 Percent 1.9 1.4**
Farms w/ sales over $250,000 in 1982 Percent 5.3 5.8
Farms w/ sales under $20,000 in 1982 Percent 35.7 38.9*

Farmers working off-farm 200+ days, 1982 Percent 17.9 21.0**

Notes: * and ** indicate that the difference between high-CRP counties and their matched pairs
is significantly greater than 0 at the 0.05 and 0.01 level, respectively. High CRP counties have
an average CRP rental-payment-to-income ratio for 1991-93 exceeding 2.75 percent.1 Statistics
reported are the percent of observations coded as “1.” Source: Reproduced from Sullivan et al.
2004, p. 80.
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Table 2: Mean values of Employment Trends, Demographic and Amenity Variables

High-CRP Matched
Variable Description Unit Counties Counties
Post-CRP employment change:

1985-1992 (short run) Percent -3.7 1.4**
1985-2000 (long run) Percent 7.6 13.4**

Pre-CRP employment change
1970-1982 employment Percent 1.6 13.5**
1982-1985 employment Percent -1.7 0.3**

Demographic characteristics:
Black population, 1980 Percent 0.6 0.4

Hispanic population, 1980 Percent 4.4 6.9
Native American population, 1980 Percent 3.3 1.9

Population under 18, 1980 Percent 29.8 29.3
Population over 62, 1980 Percent 19.3 19.7

Under 12 years of school, aged 25-44, 1980 Percent 17.2 16.5
College grads, aged 25-44, 1980 Percent 16.9 17.4

Population density, 1980 Percent 5 10**
Natural amenity characteristics:

High mountains dummy variable1 0/1 5.6 10.8
Water/total area (x 10) Log -6.5 -6.2

Land in forest Percent 3.7 8.5**
January days with sun (x 10) Z-score 5.2 5.4

January temperature (x 10) Z-score -8.3 -6.1*
July humidity (x 10) Z-score 9.7 7.1**

July temperature (x 10) Z-score -4.8 -5
Natural amenities scale (x 10) Z-score -7.2 -6.6

Notes: * and ** indicate that the difference between high-CRP counties and their matched pairs
is significantly greater than 0 at the 0.05 and 0.01 level, respectively. High CRP counties have
an average CRP rental-payment-to-income ratio for 1991-93 exceeding 2.75 percent.1 Statistics
reported are the percent of observations coded as “1.” Source: Reproduced from Sullivan et al.
2004, p. 79.
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Table 3: Replication of Long-Run Job Growth Model

Standardized
Variable Beta Std. Error t-stat Pr(> |t|) Betaa

CRP payments to income ratio 0.007 0.003 1.945 0.054 0.237
Population density, 1980 0.035 0.034 1.052 0.294 0.181
Density x CRP ratio -0.002 0.003 -0.576 0.566 -0.061
Employed in ag, 1980 -0.002 0.002 -1.114 0.267 -0.159
Density x Percent ag emp. 0.000 0.001 -0.367 0.714 -0.046
Population, 1982/1970 0.256 0.195 1.314 0.191 0.158
Population, 1985/1982 0.225 0.314 0.716 0.475 0.056
Employment, 1982/1970 -0.175 0.086 -2.039 0.043 -0.204
Employment, 1985/1982 -0.157 0.163 -0.964 0.337 -0.075
Under 18 years of age, 1980 (%) 0.006 0.006 1.039 0.300 0.157
Over 62 years of age, 1980 (%) 0.000 0.005 -0.036 0.971 -0.005
American Indian, 1980 (%) 0.002 0.002 1.097 0.274 0.115
Black, 1980 (%) -0.008 0.002 -3.220 0.002 -0.231
Hispanic, 1980 (%) 0.001 0.002 0.700 0.485 0.079
Cropland, 1982 (%) -0.001 0.001 -1.270 0.206 -0.155
Livestock/total sales, 1982 0.000 0.001 -0.694 0.489 -0.063
Govt payments/income, 1981-83 -0.005 0.005 -1.051 0.295 -0.131
Wheat/total sales, 1982 -0.001 0.001 -1.119 0.265 -0.117
Less than high school, 1980 -0.002 0.002 -0.958 0.339 -0.123
College, 1980 0.002 0.003 0.550 0.583 0.046
Civilian employment rate, 1980 0.002 0.003 0.760 0.449 0.069
Median household income, 1979 -0.070 0.097 -0.723 0.471 -0.080
Natural amenities index -0.004 0.013 -0.321 0.749 -0.027
Land in forest (%) 0.002 0.001 2.389 0.018 0.253
Great Plains county (1/0) -0.036 0.028 -1.264 0.208 -0.116
Employed in mining, 1980 (%) -0.027 0.026 -1.062 0.290 -0.075
Employed in recreation, 1980 (%) 0.003 0.007 0.449 0.654 0.035
Commuting outside county, 1980 0.001 0.002 0.725 0.469 0.058
Meat packing plant county (1/0) 0.042 0.092 0.460 0.646 0.030
Casino county (1/0) 0.139 0.123 1.136 0.258 0.070
Prison county (1/0) -0.019 0.083 -0.223 0.824 -0.015
N 190
Adj. R2 0.341
F-stat 4.177 p-value 0.000

Note: aThe last column of the table is for comparison to the standardized coefficients reported in Table A.3
on p. 82 of Sullivan et al. (2004).
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Table 4: Simulated Power of One-Tailed Test by Sample and Effect Size

Sample Sizea

Beta for CRP 100 150 190 200 250 300 350
-0.001 0.06 0.06 0.06 0.06 0.07 0.07 0.07
-0.005 0.24 0.33 0.42 0.43 0.51 0.60 0.67
-0.01 0.59 0.79 0.88 0.90 0.96 0.98 0.99
-0.015 0.84 0.96 0.99 0.99 1.00 1.00 1.00
-0.027 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Notes: The grey shading corresponds to the sample size in Sullivan et al.
(2004).
aPower was calculated from 10,000 draws of each sample size and re-
estimation of the model using the MCMC resampling procedure.
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Table 5: Simulated Posterior Power of One-Tailed Test and Effect Size

Prior Posterior estimate Lower Upper Posterior
of Beta CRP HPDb HPD powerb

-0.009 -0.001 -0.006 0.004 0.04c

-0.016 -0.005 -0.010 0.000 0.39
-0.024 -0.010 -0.015 -0.004 0.92
-0.032 -0.015 -0.021 -0.009 1.00
-0.048 -0.027 -0.034 -0.021 1.00

Notes: aHighest posterior density (HPD) 95% credible interval.
bGibbs MCMC power stimates evaluated at N = 190 (MCMC sample
size = 1,000, with a thinning break of 10).
cEstimated power is less than theoretical minimum power due
to random error. Error bounds are calculated as ±2 ×√

(0.05× 0.95/1, 000) = [0.0364, 0.064].
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Note: The null distributions are identical in each panel, simulated as ∼ N(0, σ2), with the variance

of the OLS standard error estimate of the CRP variable in Table 3. The vertical black line is

the critical value −1.654× 0.0034 = −0.0057 at the 5% level for a 1-tailed t-test (159 degrees of

freedom) under the null. The alternative distributions in the top panel are from the Monte Carlo

resampling procedure (10,000 replicates). The alternative distributions in the bottom panel are

posterior marginal distributions of the CRP estimate (1,000 samples, with a thinning break of

10).

Figure 1: Empirical distribution of estimates from imposed effect sizes at N = 190
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