Innovation in non-bank payment systems

Professor Bronwyn H. Hall
University of California at Berkeley
and University of Maastricht
Payment system innovations

• Non-networked but micro-chipped
 – Stored value cards (telephone, Starbucks, transit)
• Networked
 – Older proprietary networks:
 • Credit cards
 • Debit cards
 • Bank wire transfers
 – Web-based:
 • Internet (web) payment using credit cards
 • Micro-payment aggregation on the web (e.g., iTunes)
 • Bank transfers; electronic bill paying
 • Non-bank bill pay services
 – And mobile telephones

All these innovations use microprocessors or the internet
=> General Purpose Technologies
Themes

• supply and demand for innovation
• networks and standards – effects on diffusion
• general purpose technologies and co-inventions
• A few facts (but difficult to define the sector accurately)
 – Who are the players
 – Who are the patenters? (inventors?)
Determinants of innovation

• Supply
 – Cost
 – Market size and expected demand
 – Expected cost reduction
 – Market structure (radical vs incremental)
 – Appropriability (Alappat, State Street)

• Demand
 – Perceived benefits
 – Reliability and security
 – Sunk costs of learning (network effects)
Networks and standards

• Many innovations based on IT exhibit network characteristics
 – Value to individual user depends on the number (and sometimes identity) of other users => larger networks preferred
 – Full benefits occur when there are a variety of ways to connect to the network => benefits from standard interfaces; gateway technologies
 – Increasing returns to scale => tend toward quasi-monopoly

• Theory: networks supplied either monopolistically or competitively tend to be too small
Payment networks

• Internet – model open network
 – There is only one
 – Open standards
 – Relatively rapid diffusion for payment methods
 – But need for security; some proprietary methods - not ideal from consumer point of view

• Proprietary standards networks:
 – Stored value cards?
 • limits diffusion and value to consumer
 – Mobile telephones
 • Much lower cost for consumer (no computer or internet connection)
 • Alternative to stored value cards?
GPTs

• A technology that is useful in a broad range of industries and for a variety of purposes. Characterized by
 – Pervasiveness
 – Inherent potential for technical improvements
 – Innovational complementarities
 – Importance of technical standards for interoperability

• Historical examples:
 – Steam engine
 – Electricity
Microprocessor

• A GPT that has been essential to
 – Personal computing revolution
 – Internet
 – Wireless communication

• Different from earlier examples
 – More complex set of innovations
 – Much steeper cost declines over longer periods
As memory size increases, price falls: over 30 years, by 10^8 per bit
Relative Prices of Computers and Semiconductors, 1959-2003

All price indexes are divided by the output price index.
Consequences of GPTs

• Many co-inventions needed (and become possible), e.g. non-bank payment systems, digital security, etc.
• Skill requirements increase at first; can lead to temporary increases in wage inequality
• Diffusion may be slow
 – encouraged by open standards or those sponsored by a large player or industry consortium
• Achieving full benefits slow (increasing returns)
• As industry matures, often tends to vertical disintegrate (spinoffs, specialization and outsourcing)
Who are the players?

• Bradford, Davies, and Weiner (2006) lists main players:
 – 10 alliances
 – 45 firms, in 22 industries:
 • Most important: data processing & hosting; financial transaction processing – about 14% of all firms in these sectors
 – 20 entered after 1993

• Look at the two NAICS codes with the largest share of these firms
 – High median revenue growth for 20 years, now falling
 – Growth in number of firms, flat since 2001
Median annual revenue growth - Data processing, hosting, and financial transaction processing
Patenting

• Rapid growth following court decisions in 1994/95 and 1998

• 60% of BDW firms hold patents in technologies related to payment systems
 – However, almost all patents in these technologies are held by other firms (IBM, large Japanese, etc.)
 – BDW firms hold only about 2-3% of the patents (figure)
Patents granted in 94 class/subclass combinations used by NPS firms

- **Payment systems firms only**
- **All**