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Polanyi’s Paradox and the Shape  
of Employment Growth

David H. Autor

I. Introduction

That computers are ubiquitous in contemporary life is self-evident. 
The share of information processing equipment and software in pri-
vate, nonresidential investment rose from approximately 8 percent 
to more than 30 percent between 1950 and 2012, with the largest 
leap occurring between 1990 and 2000.1 It is hard to think of a prior 
historical episode where a single category of capital investment came 
so rapidly to dominate all others, now accounting for close to one in 
three business investment dollars.2

Given their ubiquity, it is tempting to infer that there is no task to 
which computers are not suited. But that leap of logic is unfounded. 
Human tasks that have proved most amenable to computerization 
are those that follow explicit, codifiable procedures—such as mul-
tiplication—where computers now vastly exceed human labor in 
speed, quality, accuracy and cost efficiency.3 Tasks that have proved 
most vexing to automate are those that demand flexibility, judgment 
and common sense—skills that we understand only tacitly—for ex-
ample, developing a hypothesis or organizing a closet. In these tasks, 
computers are often less sophisticated than preschool-age children. 
The interplay between machine and human comparative advantage 
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allows computers to substitute for workers in performing routine, 
codifiable tasks while amplifying the comparative advantage of work-
ers in supplying problem-solving skills, adaptability and creativity. 
Understanding this interplay is central to interpreting and forecast-
ing the changing structure of employment in the U.S. and other in-
dustrialized countries. This understanding is also is at the heart of 
the increasingly prominent debate about whether the rapid pace of 
automation threatens to render the demand for human labor obso-
lete over the next several decades. 

This paper offers a conceptual and empirical overview of the evolv-
ing relationship between computer capability and human skill de-
mands. I begin by sketching the historical thinking about machine 
displacement of human labor, and then consider the contemporary 
incarnation of this displacement—labor market polarization, mean-
ing the simultaneous growth of high-education, high-wage and low-
education, low-wages jobs—a manifestation of Polanyi’s paradox. I 
discuss both the explanatory power of the polarization phenomenon 
and some key puzzles that confront it. I finally reflect on how re-
cent advances in artificial intelligence and robotics should shape our 
thinking about the likely trajectory of occupational change and em-
ployment growth.

 A key observation of the paper is that journalists and expert com-
mentators overstate the extent of machine substitution for human 
labor and ignore the strong complementarities that increase pro-
ductivity, raise earnings and augment demand for skilled labor. The 
challenges to substituting machines for workers in tasks requiring 
flexibility, judgment and common sense remain immense. Contem-
porary computer science seeks to overcome Polanyi’s paradox by 
building machines that learn from human examples, thus inferring 
the rules that we tacitly apply but do not explicitly understand. 

II. A Brief History of Automation Anxiety

Anxiety about the adverse effects of technological change on em-
ployment has a venerable history.4 In the early 19th century, a group 
of English textile artisans calling themselves the Luddites staged a 
machine-trashing rebellion in protest of the rapid automation of 
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textile production, which they feared jeopardized their livelihoods. 
Their actions earned the term Luddite an (unflattering) entry in the 
popular lexicon. Economists have historically rejected the concerns 
of the Luddites as an example of the “lump of labor” fallacy, the sup-
position that an increase in labor productivity inevitably reduces em-
ployment because there is only a finite amount of work to do. While 
intuitively appealing, the notion that productivity gains reduce em-
ployment has received little historical support. The employment-to-
population ratio, for example, rose over the course of the 20th cen-
tury as women moved from home to market, and the unemployment 
rate fluctuated cyclically, with no long-term increase.

Yet, despite sustained increases in material standards of living, fear 
of the adverse employment consequences of technological advance-
ment has recurred repeatedly in the 20th century. In his widely dis-
cussed Depression-era essay “Economic Possibilities for our Grand-
children,” John Maynard Keynes (1930) foresaw that in a century’s 
time, “we may be able to perform all the operations of agriculture, 
mining, and manufacture with a quarter of the human effort to which 
we have been accustomed.” Keynes viewed these developments as 
posing short-term challenges, “For the moment the very rapidity of 
these changes is hurting us and bringing difficult problems to solve. 
… We are being afflicted with a new disease of which some readers 
may not yet have heard the name, but of which they will hear a great 
deal in the years to come—namely, technological unemployment.” 
But Keynes was sanguine about the long run, opining that “this is 
only a temporary phase of maladjustment,” and predicting that the 
15-hour workweek (supporting a high standard of living) would be 
commonplace in a century’s time. 

Keynes’ projection that the maladjustment was “temporary” was 
a bold one given that he was writing during the Great Depression. 
But the end of the Second World War seemed to affirm the rising 
prosperity that Keynes had foreseen. Perhaps more surprising is that 
“automation anxiety” recurred two decades after the Second World 
War, during what was arguably the height of American economic 
pre-eminence. In 1964, President Johnson empaneled a “blue rib-
bon” National Commission on Technology, Automation, and  
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Economic Progress, whose charge was “to identify and assess the past 
effects and the current and prospective role and pace of technologi-
cal change; to identify and describe the impact of technological and 
economic change on production and employment, including new 
job requirements and the major types of worker displacement, both 
technologically and economic, which are likely to occur during the 
next 10 years.” 

While the commission ultimately concluded that automation did 
not threaten employment at that time, it recommended as insur-
ance against this possibility, “a guaranteed minimum income for each 
family; using the government as the employer of last resort for the 
hard core jobless; two years of free education in either community or 
vocational colleges; a fully administered federal employment service, 
and individual Federal Reserve Bank sponsorship in area economic 
development free from the Fed’s national headquarters” (The Herald 
Post 1966). 

The blue-ribbon commission’s sanguine conclusions did not en-
tirely allay the concerns of contemporary social critics. In an open 
letter to President Johnson in 1966, the self-titled Ad Hoc Commit-
tee on The Triple Revolution, which included Nobel laureates Linus 
Pauling (chemistry) and Gunnar Myrdal (economics), as well as eco-
nomic historian Robert Heilbroner, opined that “The traditional 
link between jobs and incomes is being broken. … The economy of 
abundance can sustain all citizens in comfort and economic security 
whether or not they engage in what is commonly reckoned as work” 
(quoted in Akst 2013).5 Writing separately in The Public Interest in 
1965, Heilbroner argued that, “the new technology is threatening a 
whole new group of skills—the sorting, filing, checking, calculating, 
remembering, comparing, okaying skills—that are the special pre-
serve of the office worker. … In the end, as machines continue to in-
vade society, duplicating greater and greater numbers of social tasks, 
it is human labor itself—at least, as we now think of ‘labor’—that is 
gradually rendered redundant” (pp. 33-36).

In the five decades since the Ad Hoc Committee wrote its open 
letter, human labor has not been rendered redundant, as these  
scholars had feared. But automation anxiety has clearly returned. 
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Chart 1
Chicago Booth IGM Expert Poll:

Impact of Automation on Employment and Wages
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Perhaps most telling is the finding of a recent poll of leading aca-
demic economists conducted by the Chicago-based Initiative on 
Global Markets regarding the impact of technology on employ-
ment and earnings.6 Consistent with the canonical economic view 
that technology is, in the memorable phrase of Joel Mokyr, the “le-
ver of riches,” 88 percent of economists in the poll either agreed or 
strongly agreed with the statement that “advancing automation has 
not historically reduced employment in the United States” (Chart 
1). Yet, surprisingly, 43 percent of those polled endorsed (i.e., agreed 
with) the statement that “information technology and automation 
are a central reason why median wages have been stagnant in the 
U.S. over the past decade, despite rising productivity.” In contrast, 
only 28 percent disagreed or strongly disagreed. While I know of 
no comparable survey data from a decade earlier, I find these poll 
results stunning because they suggest that a plurality of mainstream 
economists has accepted—at least tentatively—the proposition that 
a decade of technological advancement has made the median worker 
no better off, and possibly worse off.

III. Employment Polarization: A Manifestation of  
 Polanyi’s Paradox 

To understand the wellspring of these concerns, it is useful to start 
from first principles. What do computers do? And how does their 
widespread adoption change what workers do?7 Anyone with chil-
dren knows that computers appear “magical” to end-users. But any-
one who has written computer software knows that programming a 
computer to accomplish even the most rudimentary tasks is a tedious 
chore. Computers do not think for themselves, do not have com-
mon sense, do not compensate for programmer oversights and errors 
and do not improvise solutions for unexpected cases. Fundamentally, 
computers follow procedures meticulously laid out by programmers. 
For a computer to accomplish a task, a programmer must first fully 
understand the sequence of steps required to perform that task, and 
then must write a program that, in effect, causes the machine to pre-
cisely simulate these steps. 

One early example of computer simulation was the use of punch 
card-driven computers at the Los Alamos National Laboratory to 
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calculate the physical properties of explosions and implosions dur-
ing the development of the first nuclear weapons.8 But the scope of 
computer simulation is not limited to simulating physical processes. 
When a computer processes a company’s payroll, alphabetizes a list 
of names, or tabulates the age distribution of residents in each U.S. 
Census enumeration district, it is “simulating” a work process that 
would, in a previous era, have been done by humans using nearly 
identical procedures. 

The principle of computer simulation of workplace tasks has not 
fundamentally changed since the dawn of the computer era. But its 
cost has. An ingenious 2007 paper by William Nordhaus estimates 
that the real cost of performing a standardized set of computations 
has fallen by at least 1.7 trillion-fold since the manual computing 
era, with most of that decline occurring since 1980. This remarkable 
cost decline creates strong economic incentives for firms to substitute 
ever-cheaper computing power for relatively expensive human labor, 
with attendant effects on employers’ demand for employees. What 
are these effects? 

The first-order effect is, of course, substitution. As the price of 
computing power has fallen, computers have increasingly displaced 
workers in accomplishing explicit, codifiable tasks—multiplication, 
for example. Autor, Levy and Murnane 2003 (ALM hereafter) term 
these activities as “routine tasks,” meaning tasks that follow an exhaus-
tive set of rules and hence are readily amenable to computerization. 9 
Routine tasks are characteristic of many middle-skilled cognitive and 
manual activities, such as bookkeeping, clerical work and repetitive 
production tasks. Because the core tasks of these occupations follow 
precise, well-understood procedures, they are increasingly codified in 
computer software and performed by machines. This force has led to 
a substantial decline in employment in clerical, administrative sup-
port and, to a lesser degree, production and operative employment, 
as I document below. 

But the scope for substitution is bounded: engineers cannot pro-
gram a computer to simulate a process that they (or the scientific com-
munity at large) do not explicitly understand. This constraint is more 
binding than one might initially surmise because there are many tasks 
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that we understand tacitly and accomplish effortlessly for which we do 
not know the explicit “rules” or procedures. I refer to this constraint 
as Polanyi’s paradox, following Michael Polanyi’s (1966) observation 
that, “We know more than we can tell.” When we break an egg over 
the edge of a mixing bowl, identify a distinct species of birds based 
only on a fleeting glimpse, write a persuasive paragraph, or develop a 
hypothesis to explain a poorly understood phenomenon, we are en-
gaging in tasks that we only tacitly understand how to perform.10 Fol-
lowing Polanyi’s observation, the tasks that have proved most vexing 
to automate are those demanding flexibility, judgment and common 
sense—skills that we understand only tacitly. 

At a practical level, Polanyi’s paradox means that many familiar 
tasks, ranging from the quotidian to the sublime, cannot currently 
be computerized because we don’t know “the rules.” At an economic 
level, Polanyi’s paradox means something more. The fact that a task 
cannot be computerized does not imply that computerization has no 
effect on that task. On the contrary: tasks that cannot be substituted 
by computerization are generally complemented by it. This point is 
as fundamental as it is overlooked. Most work processes draw upon a 
multifaceted set of inputs: labor and capital; brains and brawn; cre-
ativity and rote repetition; technical mastery and intuitive judgment; 
perspiration and inspiration; adherence to rules and judicious appli-
cation of discretion. Typically, these inputs each play essential roles; 
that is, improvements in one do not obviate the need for the other. If 
so, productivity improvements in one set of tasks almost necessarily 
increase the economic value of the remaining tasks.11 

Concretely, consider the role played by mechanization in construc-
tion. By historical standards, contemporary construction workers are 
akin to cyborgs. Augmented by cranes, excavators, arc welders and 
pneumatic nail guns, the quantity of physical work that a skilled 
construction worker can accomplish in an eight-hour workday is 
staggering. Naturally, automation has heavily substituted for human 
labor in performing construction tasks and, consequently, many 
fewer construction workers are required today to accomplish a given 
construction task than 50 years ago. 
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But construction workers have not been devalued by this substitu-
tion. Despite the array of capital equipment available, a construction 
site without construction workers produces nothing. Construction 
workers supply tasks such as control, guidance and judgment that 
have no current machine substitutes and which therefore become 
more valuable as machinery augments their reach. A worker wielding 
a single shovel can do a fairly limited amount of good or harm in an 
eight-hour day. A worker operating a front-end loader can accom-
plish far more. To a first approximation, automation has therefore 
complemented construction workers—and it has done so in part by 
substituting for a subset of their job tasks. 

This example should not be taken to imply, however, that techno-
logical change is necessarily Pareto improving, even for construction 
workers. There are three factors that mitigate or augment its impacts:

1. Workers benefit from automation if they supply tasks that are 
complemented by automation but not if they primarily (or ex-
clusively) supply tasks that are substituted. A construction worker 
who knows how to operate a shovel but not an excavator will 
generally experience falling wages as automation advances. 

2. The elasticity of final demand can either dampen or amplify the 
gains from automation. Conceivably, productivity growth in con-
struction could outstrip demand so that the value of further con-
struction would fall even faster than output rose.12 But this hypo-
thetical response cannot capture the general case. Because household 
consumption has at least kept pace with household incomes over 
the very long run, we know that most technological improvements 
have ultimately translated into increased consumption rather than 
greater savings. 

3. Labor supply changes can also mitigate wage gains. If the comple-
mentary tasks that construction workers supply are abundantly 
available elsewhere in the economy, it is plausible that a flood of 
new construction workers will temper wage gains emanating from 
complementarities between automation and human labor input.13 
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The construction example, writ large, explains a critical conse-
quence of computerization that is typically overlooked in discussions 
of machine-worker substitution. Because machines both substitute 
for and complement human labor, focusing only on what is lost 
misses the central economic mechanism through which productiv-
ity growth raises the value of the tasks that workers uniquely supply. 

I now return to Polanyi’s paradox as it applies to computerization, 
focusing separately on two different margins of adjustment: changes 
in the occupational distribution (aka job polarization) and changes 
in the wage distribution. I will argue that these occupational and 
wage effects are likely to be distinct from one another for reasons 
hinted at in the discussion of construction labor above. 

If computers largely substitute for routine tasks, how do we charac-
terize the nonroutine tasks for which they do not substitute? Autor, 
Levy and Murnane (2003) draw a distinction between two broad 
sets of tasks that have proven stubbornly challenging to computer-
ize. One set includes tasks that require problem-solving capabilities, 
intuition, creativity and persuasion. These tasks, which ALM term 
“abstract,” are characteristic of professional, technical and managerial 
occupations. They employ workers with high levels of education and 
analytical capability, and they place a premium on inductive reason-
ing, communications ability and expert mastery. 

The second broad category of nonroutine tasks that ALM identify 
are those requiring situational adaptability, visual and language recog-
nition, and in-person interactions—which ALM term manual tasks. 
Manual tasks are characteristic of food preparation and serving jobs, 
cleaning and janitorial work, grounds cleaning and maintenance, in-
person health assistance by home health aides, and numerous jobs in 
security and protective services. These jobs tend to employ workers 
who are physically adept and, in some cases, able to communicate 
fluently in spoken language. While these are not highly skilled ac-
tivities by human labor standards, they currently present daunting 
challenges for automation. Equally noteworthy is that many of the 
outputs of these jobs (haircuts, fresh meals, housecleaning) must 
be produced and performed on-site or in person (at least for now), 
and hence these tasks are not currently subject to outsourcing. Yet,  
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because these jobs generally do not require formal education or ex-
tensive training beyond a high school degree, the potential supply of 
workers who can perform these jobs is very large. 

Since jobs that are intensive in either abstract or manual tasks 
are generally found at opposite ends of the occupational skill spec-
trum—in professional, managerial and technical occupations on 
one hand, and in service and laborer occupations on the other—a 
straightforward implication of this reasoning is that computerization 
of routine job tasks may lead to the simultaneous growth of high-
education, high-wage and low-education, low-wages jobs at the ex-
pense of middle-wage, middle-education jobs—a phenomenon that 
Maarten Goos and Alan Manning termed as “job polarization” in a 
2003 working paper. A large body of U.S. and international evidence 
confirms the pervasive presence of employment polarization: com-
puterization is strongly associated with employment polarization at 
the level of industries, localities and national labor markets (Autor, 
Katz and Kearney 2006 and 2008; Goos and Manning 2007; Autor 
and Dorn 2013a; Michaels, Natraj and Van Reenen 2014; Goos, 
Manning and Salomons 2014).14 

Chart 2 illustrates this pattern for the United States. The chart 
plots percentage-point changes in employment by decade for 1979-
2012 for 10 major occupational groups encompassing all of U.S. 
nonagricultural employment.15 These 10 occupations divide roughly 
into three groups. On the right-hand side of the chart are managerial, 
professional and technical occupations, which are highly educated 
and highly paid. Between one-quarter and two-thirds of workers in 
these occupations had at least a four-year college degree in 1979, 
with the lowest college share in technical occupations and the highest 
in professional occupations (Acemoglu and Autor 2011). Employ-
ment growth in these occupations was robust throughout the three 
decades plotted. Even in the deep recession and incomplete recovery 
between 2007 and 2012, these occupations experienced almost no 
absolute decline in employment.  

Moving leftward, the next four columns display employment 
growth in middle-skill occupations, comprising sales; office and 
administrative support; production, craft and repair; and operator, 
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fabricator and laborer. The first two of this group of four are middle-
skilled, white-collar occupations that are disproportionately held by 
women with a high school degree or some college. The latter two 
categories are a mixture of middle- and low-skilled blue-collar occu-
pations that are disproportionately held by males with a high school 
degree or lower education. While the headcount in these occupa-
tions rose in almost every decadal interval between 1979 and 2007, 
their growth rate lagged the economywide average and, moreover, 
generally slowed across decades. These occupations were hit particu-
larly hard after 2007, with absolute declines in employment between 
2007 and 2012 ranging from 5 percent to 15 percent. 

The leftmost three columns of Chart 2 depict employment trends 
in service occupations, which are defined by the Census Bureau as 
jobs that involve helping, caring for or assisting others. The majority 
of workers in service occupations have no post-secondary education, 
and average hourly wages in service occupations are in most cases 

Chart 2
Percentage Changes in Employment by Major Occupational 
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below the other seven occupations categories. Despite their low edu-
cational requirements and low pay, employment has grown relatively 
rapidly in service occupations over the past three decades. All three 
broad categories of service occupations, protective service, food prep-
aration and cleaning services, and personal care, expanded by double 
digits in the both the 1990s and the pre-recession years of the past 
decade (1999-2007). Notably, even during the recessionary years 
of 2007 through 2012, employment growth in service occupations 
was modestly positive—more so, in fact, than the three high-skilled 
occupations that have also fared comparatively well (professional, 
managerial and technical occupations). As noted by Autor and Dorn 
(2013a), the employment share of service occupations was essentially 
flat between 1959 and 1979. Thus, their rapid growth since 1980 
marks a sharp trend reversal. 

Cumulatively, these two trends of rapid employment growth in 
both high- and low-education jobs have substantially reduced the 
share of employment accounted for by “middle-skill” jobs. In 1979, 
the four middle-skill occupations (sales, office and administrative 
workers, production workers and operatives) accounted for 60 per-
cent of employment. In 2007, this number was 49 percent, and in 
2012, it was 46 percent. One can quantify the consistency of this 
trend by correlating the changes in occupational employment shares 
across these 10 occupational categories across multiple decades. The 
correlation between changes in occupational shares between 1979-
1989 and 1989-1999 was 0.64, and for the decades of 1989-1999 
and 1999-2007, was 0.67. Remarkably, the correlation between oc-
cupational share changes during 1999-2007 and 2007-12—that is, 
prior to and during the Great Recession—was 0.80. 

The polarization of employment across occupations is not unique 
to the United States. Evidence of this fact is presented in Chart 3, 
which plots changes in the share of employment between 1993 and 
2010 within three broad sets of occupations—low-, middle-, and 
high-wage—covering all nonagricultural employment in 16 Euro-
pean Union economies. In all countries, middle-wage occupations 
declined as a share of employment, high-wage occupations increased 
as a share of employment, and low-wage occupations gained in size 
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Chart 3
Change in Occupational Employment Shares in Low-, Middle- 
and High-Wage Occupations in 16 EU Countries, 1993- 2010
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relative to middle-wage occupations over this 17-year period.16 The 
comparability of these occupational shifts across a large set of de-
veloped countries—the United States among them—makes it likely 
that a common set of forces contributes to these shared labor-market 
developments.17 Simultaneously, the substantial differences among 
countries apparent in the data underscores that no single factor or 
common cause explains the diversity of experiences across the United 
States and the European Union.

IV. Does Employment Polarization Lead to Wage Polarization?

From the barbell shape of occupational employment growth de-
picted in Charts 2 and 3, one might surmise that occupational po-
larization would also catalyze wage polarization—that is, rising rela-
tive wages in both high-education, abstract task-intensive jobs and in 
low-education manual task-intensive jobs. This reasoning is appeal-
ing but incomplete because it ignores the role played by the three 
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mitigating forces discussed above: complementarity, demand elastic-
ity and labor supply.18 

Let’s first consider the impact of computerization on wages in ab-
stract task-intensive occupations such as managerial, professional and 
technical occupations. A key attribute of these occupations is that all 
draw upon large bodies of constantly evolving expertise, e.g., medi-
cal reports, legal cases, sales data, financial analysis and economic 
statistics—so much so that many abstract task-intensive occupations 
employ skilled assistants and paraprofessionals to support their in-
formation processing tasks (e.g., medical secretaries, paralegals and 
research assistants). Given this production structure, a clear predic-
tion is that computerization should strongly complement workers 
performing abstract task-intensive jobs. By dramatically lowering the 
cost and increasing the scope of information and analysis available 
to them, computerization enables workers performing abstract tasks 
to further specialize in their area of comparative advantage, with less 
time spent on acquiring and crunching information, and more time 
spent on interpreting and applying it.19 

If demand for the output of abstract task-intensive activities were 
inelastic, however, these productivity gains might work to lower 
expenditures on these outputs, which could in turn mitigate wage 
gains. While it is hard to develop a strong theoretical prior on this 
possibility, all outward evidence suggests the opposite. As the output 
of the professions has risen, demand for their services has seemingly 
more than kept pace. A leading example is medicine, where expendi-
tures for medical services have risen substantially as a share of GPD 
as the efficacy of medicine to address a larger set of ailments has ex-
panded. But one can readily make similar arguments about finance, 
law, engineering, research and design.20 

What about the labor supply? If workers could quickly move into 
the highly educated professions to capitalize on rising productivity, 
this would mute earnings gains. But of course, many professions re-
quire both college and graduate degrees (MBAs, JDs, MDs, Ph.D.s), 
meaning that the production pipeline for new entrants is five to 10 
years in length and, hence, supply almost necessarily responds slow-
ly. Indeed, as discussed in Autor (2014b), young U.S. adults have  
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responded remarkably sluggishly to the rising educational premium 
over the last 30 years—and this is particularly true for males, as 
shown in Chart 4. Thus, while the stock of workers with college and 
graduate degrees has certainly grown in response to rising productivi-
ty in these occupations, the supply response has not been nearly large 
enough to swamp the contemporaneous movements in demand. 

Workers in abstract task-intensive occupations have therefore ben-
efited from computerization via a virtuous combination of three 
forces: strong complementarities between routine and abstract tasks; 
elastic demand for services provided by abstract task-intensive oc-
cupations; and inelastic labor supply to these occupations over the 
short and medium term. In combination, these forces mean that 
computerization should raise earnings in occupations that make in-
tensive use of abstract tasks and among workers who intensively sup-
ply them. 

Do these same synergies apply to jobs that are intensive in manual 
tasks, such as janitors and cleaners, vehicle drivers, flight attendants, 
food service workers and personal care assistants? In large part, the 

Chart 4
College Share of Hours Worked in the U.S., 1963- 2012: 
Workers with Less than 10 Years of Potential Experience 
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answer appears to be no. In contrast to workers in abstract task-
intensive occupations, computerization has not greatly increased 
the reach or productivity of housekeepers, security guards, waiters, 
cooks, or home health aides. Because most manual task-intensive oc-
cupations are minimally reliant on information or data processing for 
their core tasks, there are very limited opportunities for either direct 
complementarity or substitution. There are of course exceptions to 
this generalization: GPS and scheduling software allows truckers to 
minimize wasted mileage; calendar and contact software assists home 
health workers to more effectively manage time and bill hours; com-
puterized ordering systems permit food service workers to rapidly 
tally customer tabs. But these information-intensive tasks are largely 
peripheral to these occupations’ core job tasks.21 Ironically, manual 
task-intensive occupations enjoy relatively minimal direct benefits 
from computerization because they are too well insulated, offering 
limited opportunities for substituting or complementing human la-
bor with information technology. 

Say for the sake of argument, however, that demand for manual 
task-intensive occupations was rising due to rising societal income or 
changes in preferences. Would these demand increases likely trans-
late into higher occupational earnings? The answer turns on both 
the elasticity of final demand and the elasticity of labor supply, as 
noted above. Much aggregate evidence suggests that final demand 
for manual task-intensive work—services in particular—is relatively 
price inelastic (Baumol 1967; Autor and Dorn 2013a). If so, produc-
tivity gains in manual task-intensive occupations will not necessar-
ily raise expenditure on their outputs. On the other hand, demand 
for manual task-intensive work appears to be relatively income elas-
tic (Clark 1951; Mazzorali and Ragusa 2013), meaning that rising 
aggregate incomes will tend to increase demand for these activities. 
Computerization may therefore indirectly raise demand for manual 
task-intensive occupations by increasing societal income.22 

This is where the elasticity of labor supply becomes most critical, 
however. Due to their generally low education and training require-
ments, labor supply to manual task-intensive occupations is intrinsi-
cally elastic.23 Consequently, wage increases in manual task-intensive 
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occupations generally spur a robust supply response. Moreover, work-
ers displaced from other sectors of the economy may readily obtain 
employment in manual task-intensive occupations due to their low 
entry requirements.

In short, while abstract task-intensive activities benefit from strong 
complementarities with computerization, relatively elastic final de-
mand, and a low elasticity of labor supply, manual task-intensive ac-
tivities are at best weakly complemented by computerization, do not 
benefit from elastic final demand and face elastic labor supply that 
tempers demand-induced wage increases. Thus, while computeriza-
tion has strongly contributed to employment polarization, we would 
not generally expect these employment changes to culminate in wage 
polarization except in tight labor markets (Autor and Dorn 2013a).24 

Chart 5 presents evidence consistent with this logic. Following the 
format of Chart 2, this chart depicts percentage-point changes in 
mean weekly wages by occupation among full-time, full-year workers 
for 1979 through 2012, subdividing the time interval into the 1980s, 
1990s and the pre- and post-recession 2000s. To provide additional 
detail, Chart 6 plots wage changes across all occupational catego-
ries, weighted by initial size and smoothed for clarity. Specifically, 
the chart ranks all 318 detailed occupations from lowest to highest 
by their initial skill level (as measured by its 1979 mean hourly oc-
cupational wage), groups these detailed occupations into 100 bins 
of equal sizes and plots smoothed changes in log earnings at each 
occupational percentile over each subperiod. 

The right-hand two-thirds of these wage charts look much like the 
plots of employment polarization. From 1979 through 2007, wages 
rose consistently across all three abstract task-intensive categories of 
professional, technical and managerial occupations.25 By contrast, 
wage growth in the four middle-skill, routine task-intensive occupa-
tions was less rapid than in abstract task-intensive occupations and 
generally decelerated over time—with particularly anemic (and in 
two of four categories, negative) growth after 2000. 

The low-education, manual task-intensive occupations on the left-
hand side of Charts 5 and 6 present a particularly intriguing pattern. 
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Chart 5
Changes in Mean Wages by Major Occupational Category 

Among Full- Time, Full- Year Workers, 1979–2012 
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Wage growth in these occupations was somewhat more rapid than in 
the routine task-intensive occupations in the 1980s—and even more 
so in the 1990s—which was roughly concordant with the pattern of 
employment polarization taking shape simultaneously. However, in 
the 2000s, employment and wage trends in manual task-intensive 
occupations diverged. While employment growth in these occupa-
tions exceeded that in all other categories between 2000 and 2007 
(Chart 2), wage growth was generally negative—more so than almost 
all other categories (Mishel, Shierholz and Schmitt 2013).

Why did wage growth in manual task-intensive occupations go 
from positive to negative after 1999? My strong hunch is that the 
explanation is shifting labor supply. Recent papers by Christopher 
Smith (2013), Cortes et al. (2014), and Foote and Ryan (2014) find 
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 Chart 6
 Changes in Mean Wages by Occupational Skill Percentile 

 Among Full- Time, Full- Year Workers, 1979–2012  
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that declining employment in routine task-intensive jobs has led 
middle-skill workers—both new entrants and those displaced from 
routine task-intensive jobs—to enter manual task-intensive occupa-
tions instead. This likely occurred particularly rapidly in the 2000s 
as flagging employment in middle-skill occupations combined with 
slack macroeconomic conditions spurred middle-skill workers to 
compete with less-educated workers for manual task-intensive jobs, 
thus checking the tendency for wages to rise in these occupations. 

A final set of facts starkly illustrated by Chart 6 is that overall wage 
growth was extraordinarily anemic throughout the 2000s, even prior 
to the Great Recession. Between 1999 and 2007, real wage changes 
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were negative below approximately the 15th percentile, and were be-
low 5 percentage points up to the 70th percentile of the distribution. 
Indeed, wage growth was greater at all percentiles during both the 
1980s and 1990s than in the pre-recession 2000s.26 Of course, wage 
growth was essentially zero at all percentiles during the recessionary 
years of 2007-12.27 

V. Polarization: What Have We Learned from Another  
 Decade of Data? 

Although the polarization hypothesis can explain some key features 
of the U.S. and cross-national data, reality invariably proves more 
complicated than the theory anticipates. The clearest evidence for this 
general dictum is the unexplained deceleration of employment growth 
in abstract task-intensive occupations after 2000, which is discussed 
by Beaudry, Green and Sand (2013, 2014) and Mishel, Shierholz and 
Schmitt (2013).28 This can be seen especially clearly in Chart 7, which, 
following the format of Chart 6, plots smoothed changes in the share 
of U.S. employment (rather than wages, as in Chart 6) at each oc-
cupational percentile. Since the sum of shares must equal one in each 
decade, the change in these shares across decades must total zero and, 
thus, the height at each skill percentile measures the growth in each 
occupation’s employment relative to the whole.29 

Chart 7 contributes three nuances to the occupational polarization 
story above. A first, visible on the left-hand side of the chart, is that 
the pace of employment gains in low-wage, manual task-intensive 
jobs has risen successively across periods. Gains in these occupations 
were barely discernible in the 1980s, intensified in the 1990s and 
accelerated again in the 2000s. A second nuance is that the occu-
pations that are losing share appear to be increasingly drawn from 
higher ranks of the occupational distribution. For example, the high-
est ranked occupation to lose employment share during the 1980s 
lay at approximately the 45th percentile of the skill distribution. In 
the 1990s, the crossover point lay at approximately the 55th percen-
tile. In the final two subperiods, this rank rose still further to above 
the 75th percentile—suggesting that the locus of displacement of 
middle-skill employment is moving into higher skilled territories. 
The final empirical regularity highlighted by Chart 7 is that growth 



150 David H. Autor

of high-skill, high-wage occupations (those associated with abstract 
work) decelerated markedly in the 2000s, with no relative growth 
in the top two deciles of the occupational skill distribution during 
1999 through 2007, and only a modest recovery between 2007 and 
2012. Stated plainly, the U-shaped growth of occupational employ-
ment came increasingly to resemble a downward ramp in the 2000s. 

Chart 8 takes a closer look at this phenomenon by plotting the 
distribution of occupational employment changes among college-
educated (panel A) and noncollege (panel B) workers across the three 
broad occupational categories above: manual-intensive, routine-in-
tensive and abstract-intensive.30 

One would anticipate that a long-term rise in the college-educated 
workforce would eventually lead to a growth in college-educated 
workers in nontraditional occupations. This pattern is seen in the 

 Chart 7
Smoothed Employment Changes by Occupational  
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 Chart 8
Changes in Employment Shares in Broad Occupational  
Categories, 1979–2012: Workers With and Without a 

Four- Year College Degree 

Notes: Calculated using 1980, 1990 and 2000 Census IPUMS files; American Community Survey combined  file  
2006-08, American Community Survey 2012. Manual occupations are personal care, food/cleaning  service, and protec-
tive services. Routine occupations are operators/laborers, production,  office/administrative, and sales. Abstract occupa-
tions are technicians, professionals, and managers.  
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1980s: the fraction of college-educated workers in both manual and 
routine task-intensive occupations rose modestly in this decade while 
the share in abstract-intensive occupations declines. In the subse-
quent decade of the 1990s, employment of college-educated work-
ers polarized, with a sharp reduction in routine task-intensive em-
ployment, a steep rise in abstract task-intensive employment, and a 
modest rise in manual task-intensive employment. After 2000, how-
ever, occupational employment patterns of college-educated workers 
turned sharply downward, as discussed by Beaudry, Green and Sand 
(2013, 2014). Between 1999 and 2012, the fraction of college-edu-
cated workers employed in abstract occupations fell by more than a 
percentage point, the share employed in routine occupations fell by 
0.4 percentage point, and the share employed in manual occupations 
rose by 1.5 percentage points. Among noncollege workers, however, 
we see a much more consistent pattern of sharp reductions in routine 
employment and equally large gains in manual employment with 
essentially no gains in abstract employment except during the first 
decade of the sample (panel B). In net, these patterns suggest that 
the set of abstract task-intensive jobs is not growing as rapidly as 
the potential supply of highly educated workers. As Beaudry, Green 
and Sand (2013, 2014) highlight, the coalescence of these forces has 
likely led highly educated workers to seek less educated jobs, which 
in turn creates still greater challenges for the lower educated workers 
competing for routine and manual task-intensive work. 

What explains the slowing growth of abstract task-intensive em-
ployment? One possible interpretation is that technological prog-
ress has encroached strongly upward in the task domain, such that 
it now strongly substitutes for the work done by professional, tech-
nical and managerial occupations. While one should not dismiss 
this possibility out of hand, contemporaneous data on computer 
and software investment militates against this interpretation. One 
would expect that a surge of new automation opportunities in 
highly paid work would catalyze a surge of corporate investment in 
computer hardware and software. Instead, the opposite occurred, as 
shown in Chart 9. After rising near-monotonically from approxi-
mately one-half of 1 percent to almost 5 percent of gross domestic 
product (GDP) between 1950 and 2000, private fixed investment 
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in information processing equipment and software dropped by a 
full percentage point (more than 20 percent) between 2000 and 
2002, and remained depressed thereafter. As of the first quarter of 
2014, information processing equipment and software investment 
as a share of GDP was (only) at 3.5 percent, a level last seen in 1995 
at the outset of the “dot-com” era.

Given that both employment growth in abstract task-intensive 
occupations and computer investment tailed off simultaneously, 
is it possible that one caused the other? That is roughly the view 
espoused by Beaudry, Green and Sand (2013). Building on Welch 
(1970) and Schultz (1975), they posit a model in which the intro-
duction of a new technology generates demand for managerial and 
problem-solving skills (abstract tasks) during an adoption period, 
while the technology is installed, adapted, mastered and routinized, 
after which skill demands slacken since the challenge of adaptation 
gives way to the more quotidian tasks of operation and maintenance. 
The Beaudry, Green and Sand conceptual model can therefore  
rationalize both decelerating employment in abstract task-intensive 
work and slowing investment in information technology, though 

 Chart 9
Private Fixed Investment in Information Processing Equipment 
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unfortunately the model generates few testable predictions beyond 
these aggregate facts. 

An alternative interpretation of these facts, offered by Gordon 
(2012), is not that the computer revolution has been fully realized 
but rather that it has petered out. Gordon argues that the gains 
from information technology have been relatively superficial and 
short-lived, with few of the monumental consequences for produc-
tivity or human welfare afforded by prior 18th and 19th century 
technological revolutions—transportation, power generation, com-
munications and sanitation. Thus, the slowdown in computer in-
vestment reflects the onset of rapidly diminishing marginal returns 
to information technology and an accompanying deceleration of 
productivity growth.31 

While I do not have a strongly evidenced counter-explanation for 
these same facts, I am skeptical of both interpretations. Each would 
seem to imply that IT investment would plateau as the technology 
either attained maturity or reached a point of diminishing returns. 
But this does not accord with the evidence in Chart 9. Information 
technology investment abruptly reversed course after 2000, suggest-
ing a rapid pullback in demand. Moreover, in the five years prior to 
this pullback, IT investment surged at an unprecedented rate, rising 
by approximately two-tenths of a percent of GDP in each year. What 
this pattern suggests to me is a temporary dislocation of demand for 
IT capital during the latter half of the 1990s followed by a sharp cor-
rection after 2000—in other words, the bursting of a bubble. The 
end of the “tech bubble” in the year 2000 is of course widely rec-
ognized, as the NASDAQ stock index erased three-quarters of its 
value between 2000 and 2003. Less appreciated, I believe, are the 
economic consequences beyond the technology sector: a huge falloff 
in IT investment, which may plausibly have dampened innovative 
activity and demand for high skilled workers more broadly. 

It is also possible to read a more optimistic message from the 
trends in Charts 7 and 8. Employment in highly skilled occupations  
appears to have shown renewed growth after 2007, and this may augur  
renewed investment and innovative activity. Simultaneously, the  
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ongoing contraction of middle-wage occupations and rapid expan-
sion of lower-wage occupations provides less cause for comfort. 

VI. The Future of Polanyi’s Paradox 

Even as investment in information technology has slowed, popu-
lar and academic discussion of the potentially dire consequences of 
automation for employment has accelerated.32 MIT scholars Erik 
Brynjolfsson and Andrew McAfee argue in a 2011 book that work-
ers are in danger of losing the “race against the machine.” In a 2012 
working paper, Sachs and Kotlikoff present a model in which “smart 
machines” yield an economy of “long-term misery” because work-
ers whose labor is devalued by automation are unable to make the 
human capital investments that would enable their children to prof-
it from advancing technology. In a popular vein, journalist Kevin 
Drum (2013) warns in Mother Jones that our “robot overlords” will 
soon take our jobs.33 But where are these robot overlords? And if 
they are not here already—and all outward appearances suggest that 
they are not—should we expect their imminent arrival? In this final 
section, I discuss the progress of computing toward overcoming Po-
lanyi’s paradox. 

In the past decade, computerization has progressed into spheres of 
human activity that were considered off limits only a few years ear-
lier—driving vehicles, parsing legal documents, even performing ag-
ricultural field labor. Yet, Polanyi’s paradox remains relevant. Indeed, 
it helps to explain what has not yet been accomplished and to illumi-
nate the current technological approaches used to enlarge the set of 
machine-feasible tasks. In my reading of the technology landscape, 
there are two overarching approaches that engineers employ to com-
puterize tasks for which we “do not know the rules.” One approach, 
which I call environmental control, bows to Polanyi’s paradox. The 
second, machine learning, attempts to make an end-run around it. 

VI.i. Environmental Control 

Most automated systems lack flexibility—they are brittle. Mod-
ern automobile plants, for example, employ industrial robots to in-
stall windshields on new vehicles as they move through the assem-
bly line. But aftermarket windshield replacement companies employ  
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technicians, not robots, to install replacement windshields. Why not 
robots? Because removing a broken windshield, preparing the wind-
shield frame to accept a replacement, and fitting a replacement into 
that frame demand far more real-time adaptability than any contem-
porary robot can approach.

The distinction between assembly line production and the in-situ 
repair highlights the role of environmental control in enabling auto-
mation. While machines cannot generally operate autonomously in 
unpredictable environments, engineers can in some cases radically 
simplify the environment in which machines work to enable autono-
mous operation. The factory assembly line provides one such example 
of environmental control. But there are numerous examples that are 
so ingrained in daily technology that they escape notice. Present day 
automobiles, for example, are highly evolved machines—efficient, 
powerful, safe and reliable. But in another sense, they are remarkably 
helpless: they can only operate on smooth paved surfaces, something 
that is almost never found in nature. To enable their operation, hu-
manity has adapted the naturally occurring environment by leveling, 
grading and covering with asphalt a nontrivial percentage of the earth’s 
land surface.34 Environmental control for automobile travel has meant 
remaking the natural landscape to machine age specifications. 

Executing nonroutine tasks is a central obstacle in computer-based 
automation. Thus, environmental control in computer applications 
often means eliminating nonroutine work tasks. One can see this 
process clearly in industrial robotics. Large online retailers, such 
as Amazon.com, Zappos.com and Staples.com, operate systems of 
warehouses that stock, pack and ship thousands of varieties of nonho-
mogenous goods directly to consumers and businesses. These ware-
houses employ legions of dexterous, athletic “pickers,” who run and 
climb through shelves of typically non-air-conditioned warehouses 
to locate, collect, box, label and ship goods to purchasers. There is at 
present no technologically viable or cost-effective robotic facsimile 
for these human pickers. The job’s steep requirements for flexibility, 
object recognition, physical dexterity, and fine motor coordination 
are too formidable. 
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But large components of warehousing can be automated, as demon-
strated by Kiva Systems, a robotic warehousing startup that was pur-
chased by Amazon in 2012. The core of the Kiva system is a dispatch 
program that oversees the flow of all goods through the warehouse 
from stocking, to storage, to picking and shipping. The dispatch 
software directs both a fleet of Kiva robots—essentially motorized, 
remotely controlled go-karts—and a set of human stockers and pick-
ers who work in tandem with the robots. The Kiva robots circulate 
through a warehouse that is filled with uniform racks of freestanding 
stocked shelves. The robots’ sole task is to transport shelves from one 
location to another, which they accomplish by maneuvering under 
a rack of shelves, raising slightly to elevate the rack from the floor, 
motoring to a new location, and then lowering the rack. 

As objects arrive at the warehouse for stocking, the dispatch soft-
ware directs robots to transport empty shelves to the loading area 
where they line up for loading. The software simultaneously directs 
human stockers to place merchandise on awaiting shelves at precise 
locations. Once stocked, shelves are sent back into the warehouse on 
their robotic carriers, where the dispatch software directs their dy-
namic placement to optimize product availability for expected prod-
uct demand. As new orders arrive, the dispatch software sends robots 
to retrieve shelves containing needed items. The shelves line up in 
the packing area where they await a human picker who, directed by a 
laser pointer controlled by the dispatch software, picks objects from 
the assembled shelves, packs them in shipping boxes, applies a ship-
ping label, and drops the package in a chute for delivery. As items 
are picked, the shelves scurry back to the warehouse floor (perhaps 
dynamically relocated) until needed again for packing or restocking.

Human flexibility is still required in the Kiva-operated warehouse: 
only workers handle merchandise; robots only move shelves. But the 
demand for human dexterity is dramatically reduced by automation: 
all nonroutine motor tasks are performed during stocking and pack-
ing; all other goods movement, organization, storage and retrieval is 
delegated to robots, whose sole task is to shuttle shelves across a level 
surface (a routine task). Thus, Kiva applies environmental control to 
minimize the need for human flexibility. 
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While Kiva Systems provides a particularly clear example, the same 
principle of environmental control is often operative in unexpected 
places. Perhaps the least recognized—and most mythologized—is 
the Google self-driving car. It is sometimes said by computer scien-
tists that the Google car does not drive on roads but rather on maps. 
This observation conveys the fact that the Google car, unlike a hu-
man vehicle operator, cannot pilot on an “unfamiliar” road; it lacks 
the capability to process, interpret and respond to an environment 
that has not been pre-processed by its human engineers. Instead, the 
Google car navigates through the road network primarily by compar-
ing its real-time audio-visual sensor data (collected using LIDAR) 
against painstakingly hand-curated maps that specify the exact lo-
cations of all roads, signals, signage, obstacles, etc. The Google car 
adapts in real time to obstacles (cars, pedestrians, road hazards) by 
braking, turning and stopping. But if the car’s software determines 
that the environment in which it is operating differs from the key 
static features of its pre-specified map (e.g., an unexpected detour, 
a police officer directing traffic where a traffic signal is supposed to 
be), then the car signals for its human operator to take command. 
Thus, while the Google car appears outwardly to be as adaptive and 
flexible as a human driver, it is in reality more akin to a train running 
on invisible tracks. 

These examples highlight some of the limitations of current tech-
nology to accomplish nonroutine tasks. They also illustrate the ge-
nius of human ingenuity in surmounting these obstacles. Humans 
naturally tackle tasks in a manner that draws on their inherent flexi-
bility, problem-solving capability and judgment. Machines currently 
lack many of these capabilities, but they possess other facilities in 
abundance: strength, speed, accuracy, low cost and unwavering fealty 
to directions. Engineering machines to accomplish human tasks does 
not necessarily entail equipping machines with human capabilities; 
instead, work tasks can, in some cases, be re-engineered so that the 
need for specifically human capabilities is minimized or eliminated.

VI.ii. Machine Learning

There is an alternative route, however. Polanyi’s paradox—“we know 
more than we can tell”—presents a challenge for computerization  
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because conventional programming amounts to “telling” a computer 
precisely how to accomplish a task. If people tacitly understand how to 
perform a task but cannot “tell” a computer how to perform the task, 
then seemingly programmers cannot automate the task—or so the 
thinking has gone historically. But this understanding is shifting due 
to advances in machine learning. The simple idea of machine learning 
is to applying statistics and inductive reasoning to supply best-guess 
answers in cases where formal procedural rules are unknown. Where 
engineers are unable to program a machine to “simulate” a nonroutine 
task by following a scripted procedure, they may nevertheless be able to 
program a machine to master the task autonomously by studying suc-
cessful examples of the task being carried out by others. Thus, through 
a process of exposure, training and reinforcement, machine learning 
algorithms may potentially infer how to accomplish tasks that have 
proved dauntingly challenging to codify with explicit procedures. 

As one concrete example of machine learning, consider the chal-
lenge of task of visually identifying a chair.35 Applying the conven-
tional rules-based programming paradigm, an engineer might at-
tempt to specify ex ante what features of an object qualify it as a 
chair—it possesses legs, arms, a seat and a back, for example. One 
could then program a machine to identify objects possessing these 
features as chairs. But having specified such a feature set, one would 
immediately discover that many chairs do not possess all features 
(e.g., no back, no legs). If one then relaxed the required feature set 
accordingly (e.g., chair back optional), the included set would clearly 
encompass many objects that are not chairs (e.g., tables). Thus, the 
canonical routine task approach to object recognition—and many 
more sophisticated variants—would likely have very high misclas-
sification rates. Yet, any grade-school child could perform this task 
with very high accuracy. What does the child know that the rules-
based procedure does not? Unfortunately, we do not know—this is 
precisely Polanyi’s paradox. 

Machine learning potentially circumvents this problem. Relying 
on large databases of so-called ground truth—concretely, a vast set of 
curated examples of labeled objects—a machine learning algorithm 
can attempt to statistically infer what attributes of an object make 
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it more or less likely to be designated a chair. This process is called 
training. Once training is complete, the machine can then apply this 
statistical model out of sample to potentially identify chairs that are 
distinct from those in the original dataset. If the statistical model is 
sufficiently good, it may be able to recognize chairs that are some-
what distinct from those in the original training data (e.g., different 
shapes, materials, or dimensions). What makes the idea of machine 
learning powerful is that it does not require an explicit physical mod-
el of “chairness.” At its core, machine learning is an atheoretical brute 
force technique—what psychologists call “dustbowl empiricism”—
requiring only large training databases, substantial processing power, 
and, of course, sophisticated software.36 

How well does machine learning work in practice? If you use 
Google Translate, operate a smartphone with voice commands, or 
follow Netflix’ movie suggestions, you can assess for yourself how 
successfully these technologies function.37 My general observation 
is that the tools are inconsistent: uncannily accurate at times; typi-
cally, only so-so; and occasionally, unfathomable.38 IBM’s Watson 
computer famously triumphed in the trivia game of Jeopardy against 
champion human opponents. Yet Watson also produced a spectacu-
larly incorrect answer during the course of its winning match. Under 
the category of U.S. Cities, the question was, “Its largest airport was 
named for a World War II hero; its second largest, for a World War 
II battle.” Watson’s proposed answer was Toronto, a city in Canada. 
Even exemplary accomplishments in this domain can appear some-
what underwhelming. A 2012 article in The New York Times (Mar-
koff 2012) described Google’s X Lab’s recent project (Le et al., 2012) 
to apply a neural network of 16,000 processors to identify images of 
cats on YouTube (see Figure 1 for examples). The article’s headline 
ruefully poses the question, “How Many Computers to Identify a 
Cat? 16,000.”39

Since the underlying technologies—the software, hardware and 
training data—are all improving rapidly (Andreopoulos and Tsotsos 
2013), one should view these examples as prototypes rather than as 
mature products. Still, the long-term potential of machine learning for 
circumventing Polanyi’s paradox is a subject of active debate among 
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computer scientists. Some researchers expect that as computing power 
rises and training databases grow, the brute force machine learning ap-
proach will approach or exceed human capabilities. Others suspect that 
machine learning will only ever “get it right” on average while missing 
many of the most important and informative exceptions. 

To give this skepticism heft, return to the challenge of training 
a machine to recognize a chair. Ultimately, what makes an object 
a chair is that it is a device purpose-built for a human being to sit 
upon. This “purposiveness” may be difficult for a machine learning 
algorithm to infer, even given an arbitrarily large training database 
of images. As Grabner et al. (2011) argue, it is likely that humans 
recognize chairs not simply by comparing candidate objects to statis-
tically probable feature sets but also by reasoning about the attributes 
of the object to assess whether it is likely intended to serve as a chair. 
For example, both a toilet and a traffic cone look somewhat like a 
chair, but a bit of reasoning about their shapes vis-à-vis the human 
anatomy suggests that a traffic cone is unlikely to make a comfortable 
seat. Drawing this inference, however, requires reasoning about what 
an object is “for” not simply what it looks like. Contemporary object 

Figure 1
Images Identified as Cats by Google X Labs Team Using a  

Neural Network of 16,000 Processors

Source: British Broadcasting Corp. (June 26, 2012, http://www.bbc.com/news/technology- 18595351, accessed (Aug. 
4, 2014).
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recognition programs do not, for the most part, take this reasoning-
based approach to identifying objects, likely because the task of de-
veloping and generalizing the approach to a large set of objects would 
be extremely challenging.40 One is reminded of Carl Sagan’s remark 
that, “If you wish to make an apple pie from scratch, you must first 
invent the universe.”

VII. Conclusions

A principle conclusion from the discussion above is that the chal-
lenges to computerizing numerous everyday tasks—from the sublime 
to the mundane—remain substantial. Let us assume, however, that a 
set of near-term breakthroughs enables rapid technological progress 
in nonroutine manual and abstract domains. What does this augur 
for labor demand? 

As chronicled in Section II, there is a long history of leading think-
ers overestimating the potential of new technologies to substitute for 
human labor and underestimating their potential to complement it. 
The Green Revolution displaced labor from farming. The Industrial 
Revolution replaced skilled artisanal labor with unskilled factory la-
bor. The mass-produced automobile drastically reduced demand for 
blacksmiths, stable hands and many other equestrian occupations. 
Successive waves of earth-moving equipment and powered tools 
displaced manual labor from construction. In each case, groups of 
workers lost employment and earnings as specific jobs and accompa-
nying skill sets were rendered obsolete. 

Yet, short-term employment losses sparked by rising productivity 
were eventually more than offset by subsequent employment gains—
in some cases in the innovating sectors, in many cases elsewhere. 
In 1900, for example, 41 percent of the United States workforce 
was employed in agriculture. By 2000, that share had fallen to 2 
percent, in large part due to productivity gains emanating from the 
Green Revolution (Autor, 2014b). It is unlikely, however, that farm-
ers at the turn of the 20th century could foresee that 100 years later, 
healthcare, finance, information technology, consumer electronics, 
hospitality, leisure and entertainment would employ far more work-
ers than agriculture. 
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Arguably, we stand at a similar moment today. One can find fresh 
examples daily in which technology substitutes for human labor in 
an expanding—though still circumscribed—set of tasks. The com-
plementarities are always harder to identify. Despite these uncertain-
ties, there are three inferences in which we can be fairly confident: 

A first is that the technological advances that have secularly pushed 
outward the demand for skilled labor over many decades will con-
tinue to do so. As physical labor has given way to cognitive labor, the 
labor market’s demand for formal analytical skills, written commu-
nications and specific technical knowledge has risen spectacularly. If 
the 19th century U.S. labor force were suddenly restored in the 20th 
century, a large fraction of workers would be surely unemployable 
due to their exceedingly low levels of education—averaging approxi-
mately nine years of completed schooling (Katz and Goldin 2008). 
While some have speculated that the advent of labor market polariza-
tion—particularly the growth of low-education, manual task-inten-
sive jobs—indicates that the complementarity between higher edu-
cation and technological change has come to an end, this reasoning 
is incorrect. Though computerization may increase the fraction of 
jobs found in manual task-intensive work, it is generally unlikely to 
rapidly boost earnings in these occupations for the reasons discussed 
above: an absence of strong complementarities and an abundance 
of potential labor supply. Thus, human capital investment must be 
at the heart of any long-term strategy for producing skills that are 
complemented rather than substituted by technology. 

A second observation is that employment polarization will not con-
tinue indefinitely.41 While many middle-skill tasks are susceptible to 
automation, many middle-skill jobs demand a mixture of tasks from 
across the skill spectrum. To take one prominent example, medical 
support occupations—radiology technicians, phlebotomists, nurse 
technicians, etc.—are a numerically significant and rapidly growing 
category of relatively well-remunerated, middle-skill employment. 
While not all of these occupations require a college degree, they do 
at least demand two years of post-secondary vocational training.  
Significantly, mastery of “middle-skill” mathematics, life sciences 
and analytical reasoning is indispensable for success in this training. 
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Why are these middle-skill jobs likely to persist and, potentially, to 
grow? My conjecture is that many of the tasks currently bundled into 
these jobs cannot readily be unbundled—with machines performing 
the middle-skill tasks and workers performing the residual—without 
a substantial drop in quality. Consider, for example, the common-
place frustration of calling a software firm for technical support only 
to discover that the support technician knows nothing more than 
what is on his or her computer screen—that is, the technician is a 
mouthpiece, not a problem-solver. This example captures one fea-
sible division of labor: machines performing routine technical tasks, 
such as looking up known issues in a support database, and work-
ers performing the manual task of making polite conversation while 
reading aloud from a script. But this is not generally a productive 
form of work organization because it fails to harness the complemen-
tarities between technical and interpersonal skills. Stated in positive 
terms, routine and nonroutine tasks will generally coexist within an 
occupation to the degree that they are complements—that is, the 
quality of the service improves when the worker combines technical 
expertise and human flexibility.42

This reasoning suggests that many of the middle-skill jobs that per-
sist in the future will combine routine technical tasks with the set of 
nonroutine tasks in which workers hold comparative advantage—in-
terpersonal interaction, flexibility, adaptability and problem-solving.43 
Medical support occupations are one leading example of this virtu-
ous combination, but this example is not a singularity. This broad 
description also fits numerous skilled trade and repair occupations—
plumbers, builders, electricians, HVAC installers, automotive techni-
cians—marketing occupations, and even modern clerical occupations 
that provide coordination and decision-making functions rather than 
simply typing and filing. Indeed, even as some formerly middle-skill 
occupations are stripped of their routine technical tasks and arguably 
deskilled—for example the stockbroking occupation—other formerly 
high-end technical occupations are made accessible to workers with 
less esoteric technical mastery, for example, the nurse practitioner oc-
cupation that increasingly performs diagnosing and prescribing tasks 
in lieu of physicians. I expect that a significant stratum of middle-skill, 
noncollege jobs combining specific vocational skills with foundational 
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middle skills—literacy, numeracy, adaptability, problem-solving and 
common sense—will persist in coming decades.

A final observation is that while much contemporary economic 
pessimism attributes the labor market woes of the past decade to the 
adverse impacts of computerization, I remain skeptical of this infer-
ence. Clearly, computerization has shaped the structure of occupa-
tional change and the evolution of skill demands. But it is harder to 
see the channel through which computerization could have dramati-
cally reduced labor demand after 1999. As documented in Chart 9, 
the onset of the weak U.S. labor market of the 2000s coincided with 
a sharp deceleration in computer investment—a fact that appears 
first-order inconsistent with the onset of a new era of capital-labor 
substitution. Moreover, the U.S. labor market woes of the last decade 
occurred alongside extremely rapid economic growth in much of the 
developing world. Indeed, frequently overlooked in U.S.-centric dis-
cussions of world economic trends is that the 2000s was a decade of 
rising world prosperity and falling world inequality. It seems implau-
sible to me that technological change could be enriching most of the 
world while simultaneously immiserating the world’s technologically 
leading nation. 

My suspicion is that the deceleration of the U.S. labor market after 
2000, and further after 2007, is more closely associated with two other 
macroeconomic events. A first is the bursting of the “dot-com” bubble, 
followed by the collapse of the housing market and the ensuing finan-
cial crisis, both of which curtailed investment and innovative activ-
ity. A second is the employment dislocations in the U.S. labor market 
brought about by rapid globalization, particularly the sharp rise of im-
port penetration from China following its accession to the World Trade 
Organization in 2001. As documented by Autor, Dorn and Hanson 
(2013), Pierce and Schott (2013) and Acemoglu et al. (2014), China’s 
rapid rise to a premier manufacturing exporter had far-reaching im-
pacts on U.S. workers, reducing employment in directly import-com-
peting U.S. manufacturing industries and depressing labor demand in 
both manufacturing and nonmanufacturing sectors that that served as 
upstream suppliers to these industries.44 Globalization, like technologi-
cal change, is not typically Pareto improving, particularly in the short 
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run. While the long-run effects of these developments should in theory 
be positive, the adjustment process, as with technological adaptation, 
is frequently slow, costly, and disruptive.

Author’s note: I thank Erik Brynjolfsson, Chris Foote, Frank Levy, Lisa Lynch, 
Andrew McAfee, Brendan Price, Seth Teller, Dave Wessel, and participants in the 
MIT CSAIL/Economists Lunch Seminar for insights that helped to shape the pa-
per. I thank Sookyo Jeong and Brendan Price for superb research assistance.
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Endnotes
1Author’s calculations based on Bureau of Economic Analysis National Income 

and Product Account data.

2Fences used to demarcate property lines and secure livestock may be another ex-
ample. In 1872, the value of fencing capital stock in the United States was roughly 
equal to the value of all livestock, the national debt, or the railroads; annual fencing 
repair costs were greater than combined annual tax receipts at all levels of govern-
ment (Hornbeck 2010). 

3At the extreme, there are tasks that computers regularly perform that could not 
be accomplished by human labor at any price, for example, guiding a missile to 
intercept another missile in midflight. 

4This section of the paper draws heavily on Autor (2014a), with some para-
graphs quoted directly. 

5The three threats perceived by the ad hoc committee were the cybernation revo-
lution, the weaponry revolution and the human rights revolution. 

6The IGM webpage describes the panel members as follows: “Our panel was 
chosen to include distinguished experts with a keen interest in public policy from 
the major areas of economics, to be geographically diverse, and to include Demo-
crats, Republicans, and Independents as well as older and younger scholars. The 
panel members are all senior faculty at the most elite research universities in the 
United States. The panel includes Nobel Laureates, John Bates Clark Medalists, 
fellows of the Econometric Society, past Presidents of both the American Econom-
ics Association and American Finance Association, past Democratic and Republi-
can members of the President’s Council of Economics, and past and current editors 
of the leading journals in the profession.” Caveat emptor: The author is also a 
member of the panel. 

7This essay’s singular focus on the impact of computerization on the labor mar-
ket should not be taken to imply that computerization is the only important factor 
behind the employment and wage trends considered. Other important contribu-
tors include changes in the relative supply of college and noncollege labor, rising 
trade penetration, offshoring and globalization of production chains, declines in 
labor union penetration, the falling “bite” of the minimum wage and shifts in 
tax policy. In addition, many of these forces work in tandem. Advances in infor-
mation and communications technologies have directly changed job demands in 
U.S. workplaces while simultaneously facilitating the globalization of production 
by making it increasingly feasible and cost-effective for firms to source, monitor 
and coordinate complex production processes at disparate locations worldwide. 
The globalization of production has in turn increased competitive conditions for 
U.S. manufacturers and U.S. workers, eroding employment at unionized estab-
lishments and decreasing the capability of unions to negotiate favorable contracts, 
attract new members and penetrate new establishments. This multidimensional 
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complementarity among causal factors makes it both conceptually and empiri-
cally difficult to isolate the “pure” effect of any one factor. See Blinder (2009) and 
Blinder and Krueger (2013) for related theory and evidence on how the composi-
tion of job tasks—specifically, the demand for in-person interactions and physical 
proximity to customers—affect the potential for occupations to be offshored.

8In many cases, the workers who performed these tasks were given the job title of 
“computer” (Grier 2005). Prior to the Manhattan Project, an even earlier example 
of industrial-scale simulation was the use of mechanical “tabulators” to enumerate 
the 1890 Census of Population, which was stored on millions of punched cards.

9Tasks such as performing a set of mathematical calculations, retrieving, sorting, and 
storing structured information, and precisely executing a repetitive physical operation 
in an unchanging environment, are routine in the sense of ALM (2003) not because 
they are mundane but because they can be fully codified and hence automated.

10Computer scientists often refer to this same phenomenon as Moravec’s para-
dox, generally expressed as “what is called high level reasoning actually takes little 
computational effort, but low level mechanical/sensory manipulations need enor-
mous amounts of computation.” The principle was articulated by Hans Moravec, 
Rodney Brooks, Marvin Minsky and others in the 1980s. As Moravec writes in 
Mind Children: The Future of Robot and Human Intelligence (1988): “It is compara-
tively easy to make computers exhibit adult level performance in solving problems 
on intelligence tests or playing checkers, and difficult or impossible to give them 
the skills of a one-year-old when it comes to perception and mobility.” I prefer the 
term Polanyi’s paradox to Moravec’s paradox because Polanyi’s observation also ex-
plains why high-level reasoning is straightforward to computerize and sensorimo-
tor skills are not. High-level reasoning uses a set of formal logical tools that were 
developed specifically to address formal problems (e.g., counting, mathematics, 
logical deduction, encoding quantitative relationships). Sensorimotor skills, physi-
cal flexibility, common sense, judgment, intuition, creativity, spoken language, 
etc., are “built-in” capabilities that the species evolved rather than developed. For-
malizing these skills requires reverse engineering a set of activities that we normally 
accomplish using only tacit understanding. See Hoffman and Furcht (2014) for a 
discussion of the challenge that Polanyi’s paradox poses for scientific innovation.

11The extreme manifestation of this idea is the O-ring production function, dis-
cussed by Kremer (1993). In the O-ring production function, failure of any one 
step in the chain of production leads the entire production process to fail. Thus, 
improvements in the reliability of any given link increase the value of improve-
ments in all of the others. Intuitively, if n-1 links in the chain are reasonably likely 
to fail, the fact that link n is somewhat unreliable is of little consequence. If the 
other n-1 links are made reliable, however, then the value of making link n more 

reliable as well rises. 



Polanyi’s Paradox and the Shape of Employment Growth 169

12Arguably, this has occurred with agricultural products over the long run: spec-
tacular productivity improvements have met with declines in the share of house-
hold income spent on food. 

13While it is unlikely that supply effects would fully offset productivity-driven 
wages gains, there are perverse examples. Hsieh and Moretti (2003) find that new 
entry into the real estate broker occupation in response to rising house prices fully 
offsets average wage gains that would otherwise occur. 

14There are also two papers that do not find occupational polarization in the U.S. 
One is Katz and Margo (2013), who employ the extremely coarse occupation 1950 
scheme provided by the IPUMS (Ruggles et al., 2010). The 1950 scheme enables 
long-term historical comparisons (Katz and Margo’s focus) at the expense of preci-
sion and is otherwise not normally applied to data from 1980 forward. The second 
paper is Mishel, Shierholz and Schmitt (2013), who offer an extended, and for 
the most part extremely careful, critique of the literature on technological change, 
employment and wage inequality. Their paper argues at length that the growth of 
low-wage service employment in the U.S. does not commence until the 2000s, a 
finding that is at odds with all other work using contemporary occupation codes 
of which I am aware (including the Bureau of Labor Statistic’s own tabulations of 
Occupational Employment Statistics data for this time period provided in Alpert 
and Auyer 2003, Table 1). While I concur with Mishel et al. that decadal revisions 
to the U.S. Census and OES occupational coding schemes (affecting the U.S. Cen-
sus, Current Population Survey and Occupational Employment Statistics) make it 
essentially impossible to obtain fully consistent occupational employment counts 
over multiple decades, the adjustments that Mishel et al. apply to the data gener-
ate occupational patterns that appear anomalous. As in panel B of Chart 8, the 
data admit no ambiguity about the steep reallocation of noncollege (high school 
or lower) workers from routine-intensive occupations (primarily production, op-
erative and clerical work) to manual task-intensive service occupations; indeed, 
the left-hand tail of the employment polarization phenomenon is driven by the 
changing occupational allocation of noncollege workers. Mishel et al. acknowledge 
this reallocation (see Tables 6 and 8 of their paper) but view it as unimportant and 
argue that it is primarily explained by the secular decline in the fraction of noncol-
lege workers in the labor force (though it is unclear why a decline in the noncollege 
share of the labor force would increase the share of noncollege workers employed 
in service occupations). 

15More precisely, the chart plots 100 times log changes in employment, which 
are close to equivalent to percentage points for small changes.

16In 14 of 16 countries, low-wage occupations increased as a share of employment.

17Not only is the U.S. not unique in this regard, it is not even an outlier—falling 
roughly in the middle of the pack of this set of countries in the extent of employ-
ment polarization. 
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18Firpo, Fortin and Lemieux (2013) provide an analysis of the link between job 
tasks and wage polarization in the United States. 

19By the same token, computerization substitutes for many of the support oc-
cupations that these professions employ. 

20There are counterexamples as well. For example, computerization appears to 
allow “delayering” of management structures (Caroli and Van Reenen 2001). Ar-
guably, many of the middle managers displaced by delayering performed routine 
information processing tasks. 

21While surely there are important exceptions—for example, checkout cashiers 
using scanner-driven point of sale registers that interface directly to centralized 
inventory systems—I see relatively few examples where information technology 
has fundamentally transformed the work activities or productivity of workers in 
manual task-intensive occupations. (I thank Dave Wessel for the cashier example.)

22This can result from either of two economic forces. Clark (1951) argues that 
demand for services is nonhomothetic: the expenditure share of services rising with 
income. Baumol (1967) argues that growing expenditure on services reflects un-
balanced growth: because the relative prices of technologically lagging activities 
(e.g., haircuts and symphony orchestra performances) necessarily rise over time, 
an increasing share of societal income must be expended on these activities to 
maintain balanced consumption. Of course, Baumol’s argument presupposes that 
demand for these activities is relatively inelastic—otherwise expenditure would fall 
as relative prices rose. Mazzorali and Ragusa (2013) present evidence consistent 
with Clark’s view while Autor and Dorn (2013a) present evidence consistent with 
Baumol’s thesis. 

23Baumol (1967) observes that even absent productivity growth in technologi-
cally lagging occupations, wages in these occupations must rise over time with soci-
etal income to compensate workers for not entering other sectors (again, assuming 
that demand for these activities is relatively inelastic). 

24Autor and Dorn (2013a) present evidence that the consumption complemen-
tarity effect (due to rising incomes) dominated the displacement effect on net be-
tween 1980 and 2005. But this effect was primarily driven by wage developments 
in the 1990s when labor markets were extremely tight. After 2000, the expansion 
of manual task-intensive service occupations accelerated but wages in these oc-
cupations fell. 

25Noting that these occupations are also the highest paid initially, their greater 
proportional earnings growth translates into even larger dollar growth.

26Since the 2000-07 interval is two years shorter than the 1979-89, one should 
multiple the 2000-07 changes by 1.25 to put them on the same temporal footing. 
Net of this adjustment, wage growth is still considerably weaker at all percentiles 
than in the earlier two decades. 
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27Why are the rapidly rising earnings of the top 1 percent (e.g., Atkinson et. al. 
2011) not strongly evident in Chart 6? There are two reasons, one reflecting sub-
stance, and the other data. Substantively, the plot depicts changes in earnings by oc-
cupational percentile rather wage percentile. Wage growth by occupational percentile 
is less concentrated than wage growth across wage percentiles since the highest earn-
ers are found across a variety of occupations. In addition, the very highest percentiles 
of earnings are censored in public use U.S. Census and American Community Sur-
vey data files, which further masks earnings gains at extreme quantiles. 

28As discussed in endnote 14, Mishel, Shierholz and Schmitt (2013) dispute the 
factual basis and economic relevance of almost all empirical and theoretical con-
clusions of the polarization literature. Substantively, however, I believe their main 
contention is not that employment polarization has not occurred but rather that 
it has not contributed to wage polarization—or, more broadly, that occupational 
employment patterns are uninformative or irrelevant to the evolution of wage in-
equality. As discussed in Section IV and noted in Autor and Dorn (2013), occupa-
tional polarization does not necessarily generate wage polarization since there are 
two countervailing forces operative: labor demand shifts stemming from consump-
tion complementarities between goods and services (which tend to raise wages in 
service occupations over the long run); and labor supply shifts, stemming in part 
from movement of low-education workers out of middle-skill, routine-intensive 
occupations and into traditionally low-skill, manual-intensive occupations (which 
place downward pressure on wages in service occupations). Autor and Dorn (2013) 
provide evidence from local labor markets that occupational polarization contrib-
uted to wage polarization during the period 1980 through 2005. But this relation-
ship is clearly not immutable since wage polarization reversed course after 2000 
whereas employment growth in low-wage service occupation employment acceler-
ated. While the evidence on employment polarization appears to me unambigu-
ous, I leave it to the reader to assess whether these occupational employment shifts 
are helpful for understanding wage polarization or wage inequality more broadly. 

29Due to the smoothing of the plotted series, this adding up property holds only 
as an approximation. 

30Specifically, I collapse the 10 categories in Chart 2 into three broader group-
ings. Manual occupations are personal care, food/cleaning service and protective 
services. Routine occupations are operators/laborers, production, office/adminis-
trative and sales. Abstract occupations are technicians, professionals and managers.

31Gordon’s thesis does not address the labor market implications of the anti-
climactic conclusion of the information technology revolution. Thus, there is no 
implied relationship between the slowdown of IT investment and the deceleration 
of employment growth in abstract task-intensive jobs. 

32 This paragraph draws on Autor and Dorn (2013b). 
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33In a more reflective vein, Noah Smith (2013) considers the challenges for in-
come distribution if advances in robotics were to substantially devalue the stock of 
human capital. 

34So-called impervious surfaces (mostly roads and parking lots) cover more than 
43,000 square miles of land in the lower 48 United States—roughly equal to the 
land area of Ohio (EOS, American Geophysical Union, vol. 85, no. 24, p. 233, 
June 15, 2004). 

35This example draws on the discussion in Autor (2014a). 

36Levy and Murnane (2004) provide numerous illustrative examples of the auto-
mation of job tasks. For introductory material on machine learning written by and 
for economists, see Varian (2014).

37By logging and analyzing the clicks of users in response to earlier queries, search 
engines also use machine learning to dynamically refine search results offered for 
subsequent queries. For example, if the majority of users who recently searched for 
the terms “degrees bacon” clicked on links for Kevin Bacon rather than links for 
best bacon cooking temperatures, the search engine would tend to place the Kevin 
Bacon links higher in the list of results. 

38A lovely irony of machine learning algorithms is that they also cannot “tell” 
programmers why they do what they do. The “decisions” that a machine learning 
program makes following training are something of a black box. 

39As further evidence of the inchoate stage of machine learning (at least as of 2012), 
notice in Figure 1 that the image third down from the top and third over from the 
left is definitely not a cat and appears more likely to be a pair of coffee cups. 

40Could, for example, a machine that recognizes chairs by reasoning about their 
potential compatibility with human anatomy also be readily reprogrammed to 
recognize bicycles—or would it require another set of reasoning capabilities to 
determine whether the object could support a human being in the act of balancing 
while in motion?

41This discussion draws on Autor (2013), with some passages quoted directly. 

42Lawrence Katz memorably titles workers who virtuously combine technical 
and interpersonal tasks as “the new artisans” (see Friedman 2010).

43In general, these same demands for interaction frequently privilege face-to-face 
interactions over remote performance, meaning that these same middle-skill oc-
cupations may have relatively low susceptibility to offshoring.

44Borjas and Ramey (1995) present evidence from the 1950s through 1980s 
that rising foreign competition in durable goods industries increased U.S. wage 
inequality by eroding rents accruing to noncollege workers.
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